首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用金相显微镜、X射线衍射、EBSD等检测方法分析铸态、均匀化退火态和挤压态Mg-Hg-Ga合金的显微组织,并采用析氢浸泡法、动电位极化扫描、恒电流放电、交流阻抗法、阳极效率测试,研究均匀化退火及挤压对Mg-Hg-Ga阳极材料腐蚀电化学性能的影响。结果表明:均匀化退火使铸态组织中第二相数量明显减少,挤压后合金发生动态再结晶,晶粒明显细化,并形成{0001}基面织构。均匀化退火提高合金的耐腐蚀性能和阳极电流效率,降低合金的电化学活性。热挤压降低合金的耐腐蚀性能,提高合金的电化学活性和阳极电流效率。挤压态合金表现出最负的平均放电电位-1.841 V(vs SCE),最大的析氢速率4.13 mL/(cm~2·h)和腐蚀电流密度1.010mA/cm~2。均匀化退火态合金的析氢速率和腐蚀电流密度下降到最小,分别为1.75 mL/(cm~2·h)和0.241 mA/cm~2,阳极电流效率由铸态的53.68%上升到挤压态的66.63%。  相似文献   

2.
采用OM、SEM、XRD对铸态和等通道角挤压(ECAP)变形后Mg-4.5Zn-1Ca(wt%)合金的微观组织进行了表征。通过电化学工作站和浸泡法评估了ECAP变形前后合金在模拟体液(SBF)中的腐蚀性能。结果表明,铸态Mg-4.5Zn-1Ca合金显微组织由α-Mg基体及分布在晶界处和晶粒内的Ca2Mg6Zn3相组成,平均晶粒尺寸为86μm。经ECAP变形后,合金的晶粒尺寸得到显著细化,经6道次ECAP变形后的平均晶粒尺寸为5μm。随着ECAP变形道次的增加,第二相在镁基体中的分布更加均匀、弥散。ECAP变形后合金更容易发生腐蚀,挤压道次越多,合金的自腐蚀电位越负,自腐蚀电流越大,即耐蚀性越差。经6道次ECAP变形后合金的自腐蚀电位最负(-1.42 V),自腐蚀电流最大(407.38μA/cm~2),耐蚀性最差。  相似文献   

3.
为解决因残余应力、组织不均匀性、成分偏析所造成的铸态Mg-3Zn-0.8Zr-1Y(mass%)合金性能不佳的问题,对其进行了固溶和时效处理,研究了热处理工艺对其显微组织、力学性能及耐腐蚀性能的影响。结果表明:Mg-3Zn-0.8Zr-1Y合金的最优热处理工艺是480℃均匀化退火12 h后520℃固溶处理12 h,最后在170℃时效24 h。均匀化退火处理缓解了铸态合金中的偏析现象,固溶处理使铸态合金中的W(Mg3Y2Zn3)相基本融入α-Mg基体中形成过饱和固溶体,时效后组织中析出细小且弥散分布的纳米级短杆状Mg2Zn3和颗粒状Mg4Zn7第二相。与铸态合金相比,经最优工艺处理后合金的硬度、极限抗拉强度、屈服强度和伸长率分别提升到83.4 HV、204 MPa、139 MPa和12.5%,自腐蚀电位提高到-1.793 V(vs.SCE)、腐蚀电流密度降低到59.64μA/cm2,腐蚀速率降低到1.36 mm/y...  相似文献   

4.
对ZK60镁合金进行不同温度固溶处理,采用浸泡腐蚀、电化学测量研究了固溶处理后合金在模拟体液(SBF)中的腐蚀性能。利用OM(金相观察)与SEM(扫描电镜)对合金组织、腐蚀产物和腐蚀形貌进行观察,并使用EDS对腐蚀产物成分进行分析。结果表明,经固溶处理后,铸态合金中第二相逐步溶解,降低了合金基体与第二相的电位差,使合金电偶腐蚀和局部腐蚀的倾向减弱,耐腐蚀性能提高。经330℃固溶处理后的ZK60合金,腐蚀速率为2.573mm/a,腐蚀电流密度与腐蚀电位分别为0.205mA/cm~2和-1.504V,生物耐腐蚀性能理想。  相似文献   

5.
利用光学显微镜、扫描电镜及电化学工作站等设备对合金组织、电化学性能进行了表征,分析了固溶处理对Mg-0.5Zn-0.4Zr-5Gd(mass%)合金显微组织及腐蚀性能的影响。结果表明,固溶处理后,铸态组织中的析出相逐渐溶解,组织均匀,合金的力学性能得到提高,有效减小了基体和析出相之间电位差引起的电化学腐蚀,提高了合金的耐蚀性。合金经490℃固溶10 h后,抗拉强度为184.62 MPa,平均腐蚀速率为0.528 mm/a,其腐蚀电流密度和腐蚀电位分别为7.4μA/cm~2和-1.576 V,在研究范围内耐蚀性最好。  相似文献   

6.
利用光学显微镜、扫描电镜、X射线衍射仪、差示扫描量热仪、硬度试验、极化曲线测试、晶间腐蚀试验,研究了均匀化退火对7050铝合金微观组织、硬度和腐蚀性能的影响。结果表明,在465℃进行均匀化退火时,铸态合金中粗大的η相逐渐转变为S相并逐渐固溶于铝基体中,Al_7Cu_2Fe相未发生溶解,保温36 h后合金中出现了过烧现象;随保温时间延长,合金的硬度逐渐增大并趋于稳定,自腐蚀电位先增大后降低,腐蚀电流先减小后增大,晶间腐蚀深度先减小后增大,经465℃×24 h后,合金具有较好的耐腐蚀性能。  相似文献   

7.
不同Gd含量对变形Mg-Zn-Gd合金织构和室温成形性能的影响   总被引:1,自引:0,他引:1  
采用气氛保护加机械搅拌方法熔炼Mg-xZn-Ca-yHA (x=1,3,5;y=0,1,3,5)系列合金及其复合材料.通过金相显微镜(OM)和场发射扫描电子显微镜(FESEM)观察其铸态微观组织;X-射线衍射仪(XRD)分析物相组成;电化学和体外浸泡实验测试挤压态复合材料的耐腐蚀性能.结果表明,纳米羟基磷灰石(HA)颗粒可添加至Mg-Zn-Ca合金中,并在冶炼温度下脱水,转变成为了β-Ca3(PO4)2,同时显著细化基体合金的晶粒.其中,添加质量分数1%HA的复合材料具有最好的耐腐蚀性能.Mg-3Zn-Ca/1HA复合材料的腐蚀电位、腐蚀电流密度和腐蚀速率分别为-1.582 V,1.47μA/cm和14.19 mm/a,明显优于Mg-3Zn-Ca合金的-1.662 V,2.22μA/cm和21.28 mm/a.而添加3%HA的Mg-3Zn-Ca-3HA复合材料由于HA在基体中的部分团聚导致其耐腐蚀性能较Mg-3Zn-Ca合金有所下降.  相似文献   

8.
采用气氛保护加机械搅拌方法熔炼Mg-xZn-Ca-yHA(x=1,3,5;y=0,1,3,5)系列合金及其复合材料。通过金相显微镜(OM)和场发射扫描电子显微镜(FESEM)观察其铸态微观组织;X-射线衍射仪(XRD)分析物相组成;电化学和体外浸泡实验测试挤压态复合材料的耐腐蚀性能。结果表明,纳米羟基磷灰石(HA)颗粒可添加至Mg-Zn-Ca合金中,并在冶炼温度下脱水,转变成为了β-Ca3(PO4)2,同时显著细化基体合金的晶粒。其中,添加质量分数1%HA的复合材料具有最好的耐腐蚀性能。Mg-3Zn-Ca/1HA复合材料的腐蚀电位、腐蚀电流密度和腐蚀速率分别为–1.582 V,1.47μA/cm和14.19 mm/a,明显优于Mg-3Zn-Ca合金的–1.662 V,2.22μA/cm和21.28 mm/a。而添加3%HA的Mg-3Zn-Ca-3HA复合材料由于HA在基体中的部分团聚导致其耐腐蚀性能较Mg-3Zn-Ca合金有所下降。  相似文献   

9.
通过动电位极化曲线和微观腐蚀路径分析,研究了不同均匀化处理条件下和工艺状态下的6082铝合金电化学腐蚀行为,并且探讨了其腐蚀机理。结果表明,随着6082铝合金均匀化温度升高或时间延长,其电化学腐蚀后的腐蚀产物Al(OH)_3逐渐增多、增厚,腐蚀电流密度逐渐减小,合金的耐腐蚀性能增强;对于T6态锻造和T1态挤压的合金,由于锻造流线和挤压流线的组织形态差异,使腐蚀产物Al(OH)_3的分布位置不同,从而使锻造合金的腐蚀电流密度比挤压合金的要小,耐腐蚀性能更好;合金塑性变形流线中分布有颗粒状Si晶体和AlMnFeSi第二相颗粒。当腐蚀溶液与第二相Si粒子接触时,首先在Si粒子与基体之间的界面产生腐蚀,形成腐蚀裂纹。当腐蚀逐步扩展至晶界或亚晶界处时,由于晶界上连续分布的β?-Mg_2Si析出相与晶界无沉淀析出带(PFZ)构成连续的微型原电池,从而形成网状晶间腐蚀。  相似文献   

10.
为提高AZ31B镁合金表面的耐腐蚀性能,用火焰喷涂方法在镁合金表面制备Al-Mg_2Si复合涂层。采用XRD、SEM和EDS分析涂层的物相组成、微观组织及元素分布;通过电化学试验测试样品在3.5%NaCl溶液中的腐蚀电位、腐蚀电流密度;通过3.5%NaCl溶液浸泡试验测试样品的腐蚀速率;并测试涂层的显微硬度。结果表明:涂层中的主要物相有Mg_2Si、Al,组织比较致密,元素分布均匀。Tafel极化曲线测试表明,Al-Mg_2Si涂层样品与AZ31B镁合金样品相比腐蚀电位从-1.489 V正移到-1.366 V,腐蚀电流密度从2.817×10~(-3) A/cm~2降低到1.198×10~(-3) A/cm~2。浸泡试验结果表明,喷涂Al-Mg_2Si的镁合金的腐蚀速率明显低于没有喷涂的镁合金。显微硬度测试表明,涂层的显微硬度集中分布在259~308 HV0.05之间,镁合金为50~60 HV0.05。因此在AZ31B镁合金表面火焰喷涂Al-Mg_2Si涂层可以提高其耐腐蚀性能,表面硬度显著提高。  相似文献   

11.
AZ31镁合金冷喷涂纳米晶铝涂层腐蚀性能   总被引:1,自引:0,他引:1  
为了改善镁合金耐蚀性,采用冷喷涂技术在镁合金AZ31上制备出纳米晶铝涂层,分析了涂层的微观组织,通过电化学试验及中性盐雾试验研究了涂层及基体的腐蚀性能。试验结果表明,涂层的纳米晶结构成功保留,涂层组织致密、厚度均匀,涂层硬度到达111.44 HV0.025,明显高于镁合金基体的硬度(66.8 HV0.025);涂层的自腐蚀电位(-0.78 V)高于镁合金基体的自腐蚀电位(-1.79 V),涂层的自腐蚀电流密度(5.3×10-7A/cm2)比镁合金基体的自腐蚀电流密度(2.45×10-5A/cm2)低2个数量级,盐雾试验表明涂层的耐腐蚀性能明显优于镁合金基体。  相似文献   

12.
研究了Mg-6Zn-1.2Y-0.8Nd合金样品在Hank's溶液中经预浸泡处理前后的腐蚀行为。结果表明,表面的腐蚀产物对基体可以起到一定的防护作用。经4 h预浸泡处理后,合金表面形成的产物膜较为均匀,对基体的防护作用最佳,其腐蚀电流密度为1.98μA/cm~2。随着预浸泡时间的进一步延长,合金表面形成的腐蚀产物膜增厚,会发生自身开裂或与基体脱落,加剧了局部腐蚀,致使产物膜对基体的腐蚀防护作用明显下降。经48 h预浸泡处理后,合金的腐蚀电流密度增加至3.64μA/cm~2。  相似文献   

13.
为改善医用镁合金微观组织特征与降解行为,采用挤压形变工艺改变医用镁合金的晶粒尺寸特征及析出相/金属间化合物尺寸、分布规律,探究了挤压态医用Mg-2Zn-0.5Gd-1Y-0.5Mn镁合金微观结构特征及降解行为。结果表明:不同的热挤压变形并没有改变Mg-2Zn-0.5Gd-1Y-0.5Mn镁合金中第二相的类型,但改变了第二相的分布和形貌。Mg-2Zn-0.5Gd-1Y-0.5Mn镁合金的成分主为α-Mg和W-Mg3Y2Zn3。电化学测试结果表明,铸态、挤压370℃和挤压390℃合金腐蚀电流密度分别为2.498、3.656、1.012μA·cm-2。这是由于铸态组织中析出相/金属间化合物呈带状分布在基体中,可作为微阴极形成电偶腐蚀位点,加速合金腐蚀速率。合金在370℃挤压时,由于实际温度较低,部分粗化相未能充分溶解到α-Mg基体中,随着析出相数量增加及分布混乱无序,微阴极面积比例增大,进而导致腐蚀速率加剧。而390℃挤压态镁合金的挤压速度快、耗散行为慢,且铸锭与挤压机间摩擦强烈,已发生充分动态再结晶行为...  相似文献   

14.
采用金相分析、扫描电镜分析、拉伸测试和耐腐蚀性能测试等手段,研究了Ga含量(质量分数为1%,2%和5%)对铸态Mg-4Zn基合金显微组织、力学性能和耐生体腐蚀性能的影响。结果表明:Ga的加入可以明显细化铸态合金的晶粒,增加合金中第二相的体积分数,显著提高合金的强度和塑性。其中Mg-4Zn-2Ga合金的综合性能最佳,其抗拉强度、屈服强度和断后伸长率分别为233 MPa、90 MPa和24%,比基体合金分别提高了13.6%、76.5%和33.3%。然而,Ga的加入降低了Mg-4Zn合金的耐生体腐蚀性能,但是Mg-4Zn-5Ga合金的耐蚀性优于Mg-4Zn-2Ga和Mg-4Zn-1Ga合金。铸态Mg-4Zn-5Ga合金在37℃Hank's溶液中浸泡7 d的平均腐蚀速率为2.3 mg/(cm~2·d),腐蚀电流密度为29.5μA/cm~2。  相似文献   

15.
以Ca微合金化的Mg-6Al-1.2Zn系合金为研究对象,利用电化学法、失重法等研究了Ca含量对合金铸态和热处理态试样的组织与耐腐蚀性能的影响。结果表明,不同Ca含量的Mg-6Al-1.2Zn-xCa合金的铸态组织主要由α-Mg固溶体和β-Al12Mg17相组成;随着Ca含量的不同,合金中β-Al12Mg17相的数量与形态存在一定的差异。经过固溶时效处理后合金的腐蚀电位都发生了正向移动,腐蚀电流降低,合金的耐腐蚀性能得到提高,Ca含量为1%的Mg-Al-Zn-Ca合金具有优良的耐腐蚀性能。  相似文献   

16.
设计一种新型A1-Mg-Si-Cu铝合金,合金成分为Al-1.04Mg-0.85Si-0.018Cu(质量分数).采用金相观察、差热分析(DTA)、扫描电镜(SEM)和能谱分析(EDS)研究合金铸态与均匀化态的显微组织演化和成分分布.结果表明:新型A1-Mg-Si-Cu铝合金的铸态组织枝晶偏析严重,合金元素Si、Mg和Fe在晶内及晶界分布不均匀;550℃×24h均匀化处理后,合金中非平衡低熔点共晶组织和Mg2Si相基本溶入基体,Fe元素偏析难以通过均匀化消除,均匀化后,晶界上部分β-A15FeSi相转变成α-Al8Fe2Si相;该合金的过烧温度为574.5℃,最佳均匀化制度为550℃×24h;合金铸态和均匀化后维氏硬度分别为58HV和78HV,比6061合金分别提高了20%和85%.  相似文献   

17.
采用激光熔覆在45钢基体上制备了CoCrFeNiB_(0.5)高熵合金涂层,研究了不同退火温度(700、900、1100℃)对涂层组织及性能的影响。结果表明,涂层激光熔覆态相组成主要为fcc相+少量bcc相,显微组织主要为枝晶组织;退火后,相组成转变为fcc+bcc+M_xB的混合相结构;700℃退火后,枝晶略有粗化,更高温度退火使枝晶断开,枝晶组织逐渐消失;1100℃退火后出现明显的颗粒化、球化相组织;激光熔覆涂层显微硬度较高,最高达到603 HV;700、900℃退火后,由于第二相析出强化,涂层显微硬度略有提高,但1100℃退火后涂层显微硬度下降;CoCrFeNiB_(0.5)涂层具有较高的腐蚀电位与较低的腐蚀电流密度,耐腐蚀性能明显优于45钢;1100℃退火后,3.5%NaCl溶液中腐蚀电流密度比45钢基体低3个数量级,具有较好的耐腐蚀性能。  相似文献   

18.
采用中温化学复合镀在高碳钢表面制备了Ni-Cu-P-TiN复合镀层,采用SEM、XRD对镀层的相组成与微观结构进行了分析,并研究了400℃热处理时间对镀层相组成、硬度、耐腐蚀性能的影响。结果表明,TiN相均匀的分散于Ni-Cu-P胞状结构的界面之间,沉积比例在4.5%~5.0%;在400℃下进行恒温热处理,随时间延长,Ni-Cu-P-TiN镀层中逐渐析出细小Ni3P相,截面硬度增加,40min时达到最高硬度960HV;随热处理时间继续延长,Ni3P相的晶粒粗化,镀层硬度下降;镀态Ni-Cu-P-TiN镀层的自腐蚀电流密度为7.92μA,仅为高碳钢(167μA)的1/20,经400℃下恒温热处理0~40min,其自腐蚀电流密度逐渐升高,40min时达到最大值28.2μA。  相似文献   

19.
研究了均匀化处理对纳米TiN/Ti细化Al-Zn-Mg-Cu合金组织及性能的影响。结果表明,纳米TiN/Ti细化剂可显著细化铸态Al-Zn-Mg-Cu铝合金晶粒,使合金的铸态硬度(HV)从123提高至142.3。470℃×24h一级均匀化处理后,Al-Zn-Mg-Cu合金晶界第二相得到了比较充分的溶解,只有少量MgZn2相残留;经过(400℃×10h+470℃×24h)二级均匀化处理后,第二相溶解充分,但在均匀化处理之后的冷却过程中析出MgZn相,并均匀分布在晶粒中。  相似文献   

20.
对高熵合金涂层的成分设计已有较多探究,但针对无Co系高熵合金涂层研究较少。采用等离子熔覆技术在E32钢上制备AlCrFeMnNi高熵合金涂层,利用金相显微镜、SEM、EDS、XRD等对涂层的组织形貌、相结构及元素分布等进行观察分析,采用显微硬度计、电化学工作站、XPS表征涂层的硬度分布及耐腐蚀性能。结果表明,等离子熔覆制备的高熵合金涂层无裂纹、气孔等宏观缺陷,涂层为BCC结构;涂层平均硬度为411.6 HV0.5,为基体硬度的2倍以上;在质量分数3.5%的NaCl溶液中涂层的自腐蚀电位为-0.35V,自腐蚀电流密度为507 nA/cm^(2),基体的自腐蚀电位为-0.92V,自腐蚀电流密度为256μA/cm^(2),涂层的自腐蚀电位和极化电流密度较基体有大幅度提升,涂层的固溶强化作用和晶格畸变作用以及BCC结构的螺旋位错强化是提升涂层硬度的原因,均匀的元素分布和致密的钝化膜是其耐蚀性好的主要原因。通过等离子熔覆技术得到高强度、耐腐蚀性好无Co系高熵合金的涂层,可对易制备、低成本的高熵合金涂层的开发、制备和应用提供一定的技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号