首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金刚石薄膜涂层刀具及其切削性能的实验研究   总被引:3,自引:2,他引:1  
用燃焰法进行了金刚石薄膜涂层刀具的沉积实验,研究了刀具基体材料对金刚石薄膜形成的影响,通过对SiC颗粒增强铝复合材料的切削实验,研究了以金属W为基体的金刚石薄膜涂层刀具的切削性能。  相似文献   

2.
化学气相沉积金刚石薄膜刀具膜/基附着性能研究现状   总被引:1,自引:1,他引:0  
CVD金刚石薄膜涂层刀具被认为是能最早实现CVD金刚石工业化应用的领域之一.目前,限制CVD金刚石薄膜涂层刀具产品大规模产业化应用的主要原因,是金刚石薄膜与硬质合金基底之间粘附性能较差.如何提高膜/基粘附性能,确保CVD金刚石薄膜涂层刀具优异性能的发挥、涂层刀具的使用寿命和加工性能,已成为材料科学工作者迫切需要解决的问题.介绍了影响CVD金刚石薄膜硬质合金刀具膜/基附着性能的主要因素、改善金刚石薄膜与硬质合金基体之间附着力的途径以及表征膜/基附着力的测试方法等方面的研究成果,并对提高低压气相金刚石薄膜硬质合金刀具膜/基附着性能的研究现状进行了分析.  相似文献   

3.
尹超  毛善文 《硬质合金》2016,(4):275-282
CVD金刚石涂层硬质合金刀具结合了金刚石和硬质合金的优异性能,是切削加工的理想材料,具有广阔的发展前景。当前限制CVD金刚石涂层刀具应用的主要问题是金刚石涂层与刀具基体之间的附着性能较差,其主要原因是粘接相Co对CVD沉积存在不利影响以及涂层与基体之间热膨胀系数存在较大差异。本文综述了提高界面结合强度和降低涂层表面粗糙度的方法,重点介绍了在界面添加过渡层来提高界面结合强度,并指出在硬质合金基体和CVD涂层之间添加过渡层和开发纳米CVD涂层是CVD金刚石涂层刀具今后的发展方向。  相似文献   

4.
为了揭示CVD金刚石薄膜涂层刀具在硬脆材料切削中的刀具切削性能与磨损机理,利用不同沉积参数下的金刚石涂层刀具对天然石材进行了高效铣削实验。针对金刚石涂层刀具和未涂层硬质合金刀具的磨损周期和切削性能,分析刀具切削力和工件表面粗糙度随后刀面磨损面积的变化规律,总结刀具磨损机理。实验结果表明:金刚石涂层刀具切削寿命高于未涂层硬质合金刀具;金刚石刀具的磨损周期可以分为初始磨损区、稳定磨损区和加剧磨损区3个阶段,其中甲烷浓度为1%的金刚石涂层刀具寿命较长,切削性能稳定;金刚石涂层刀具的磨损机理主要包括裂纹作用下的涂层剥落、涂层内部晶间断裂和粘结磨损,其中裂纹作用下的膜-基涂层剥落磨损为刀具失效的主要磨损机制。  相似文献   

5.
碳源浓度对金刚石薄膜涂层刀具性能的影响   总被引:3,自引:1,他引:2  
用热丝CVD法,以丙酮为碳源,在WC-Co硬质合金衬底上沉积金刚石薄膜,研究了碳源浓度对金刚石薄膜涂层刀具性能的影响,结果表明,碳源浓度对金刚石涂层薄膜质量、形貌和粗糙度、薄膜与衬底间的附着力、刀具的耐用度用度发削性能有显著影响,合理控制碳源浓度对获得实用化的在硬质合金刀具基础上沉积高附着强度、低粗糙度金刚石薄膜的新技术具有重要的意义。  相似文献   

6.
金刚石薄膜涂层刀具的研究进展与应用现状   总被引:7,自引:1,他引:6  
CVD金刚石是采用化学气相沉积的方法制备出来的一种全晶质多晶纯金刚石材料,它可以呈膜状附着于刀(基)体表面,亦可以是脱离基体的纯金刚石厚片。CVD金刚石的物理性能和天然金刚石非常接近,化学性质则完全相同。本文重点对金刚石薄膜涂层刀具的研究进展、切削试验结果及应用前景进行简要的综述。  相似文献   

7.
化学气相沉积法制备金刚石涂层硬质合金工具综合了金刚石与硬质合金的优异性能,广泛应用于切削难加工材料。金刚石与硬质合金基体界面结合强度是评价金刚石涂层的一个重要性能指标。本文主要介绍了影响CVD金刚石涂层工具界面结合强度的主要因素,并对如何提高其界面结合强度的方法进行了较深入的探讨,同时科学论述了金刚石涂层结构的优化设计理念,以解决金刚石涂层附着强度低、表面粗糙度高等关键技术,这对如何提高硬质合金基体与金刚石涂层之间的界面结合强度具有一定的实际指导意义。  相似文献   

8.
目的 研制应用于超精密加工领域的高性能金刚石涂层,探究硬质合金基体表面激光微织构对硼掺杂金刚石(BDD)涂层沉积质量的影响,分析不同类型的仿生微织构对基–膜结合强度、工具切削性能的改善效果及原因。方法 在硬质合金表面使用激光脉冲制备不同类型的仿生微织构,并通过热丝化学气相沉积(HFCVD)法在刀具表面沉积BDD涂层。采用数显洛氏硬度计(HRS-150)、超景深三维显微镜、扫描电子显微镜(SEM)、能谱仪(EDS)、白光干涉表面轮廓仪、拉曼光谱(Raman)对样品进行表征。通过压痕试验及铣削试验研究涂层的附着强度和刀具的切削性能。结果 激光微织构边缘发生表面硬化。激光微织构区域沉积BDD涂层后,基体表面缺陷显著降低,织构内部金刚石晶粒更密集,沉积质量提升,三角织构(TT)边缘的金刚石颗粒堆积坡度最缓,不同类型的织构化BDD涂层的粗糙度、金刚石纯度、切削性能及附着强度均不同,涂层附着力与表面硬度呈正相关。硼掺杂三角织构(BDTTD)涂层刀具具有最佳的切削性能。结论 织构边缘和内部具有更高的金刚石二次成核率和沉积质量。织构的存在可以提升BDD涂层的附着强度和刀具性能,并且织构边缘的涂层附着力最强,这些得益于激光烧蚀及仿生微织构对硬质合金表面的硬化及对BDD涂层内在缺陷的修复。  相似文献   

9.
《磨料磨具通讯》2006,(8):18-18
内涨鼓泡法检测金刚石涂层附着强度的测试技术。该测试技术首先在金刚石涂层基体的背面采用化学腐蚀、显微加工或者其它方法加工出一个窗口容腔使得原先与基体接触的涂层内表面暴露在外。然后通过压力油从窗口容腔内对涂层施加压强,使涂层受到均布载荷的作用而产生变形。再根据帕斯卡定律及板壳理论推导出内涨鼓泡法测量涂层附着强度的理论模型,并将其转化为计算程序。由此通过精确测定涂层的变形和相应的压强便可以定量地计算出金刚石涂层的附着强度。该测量方法不仅能精确定量测定金刚石涂层的附着强度,而且测量范围不受基体形状及附着强度大小的限制,可方便地用于复杂形状基体金刚石涂层的附着强度测量,因而具有显著的经济效益。  相似文献   

10.
为了改善硬质合金刀具的耐磨性,采用U.S.E^TM工艺生产了高性能的多晶金刚石涂层。通过对WC-6Co%基体表面进行了预处理使得金刚石涂层与基体通过机械夹持作用产生很强的粘附力。用气蚀试验研究了微米结构和纳米结构的多晶金刚石膜的磨损性能。研究了金刚石结构(形态、晶拉度和晶粒取向、粗糙度)、涂层厚度以及涂层与界面之间的粘附性能对磨损机理的影响。在金刚石涂层工具的寿命和使用性能方面,纳米晶金刚石结构在工业应用上显示了很大的潜力。具有平滑表面的纳米结构金刚石比微米结构金刚石更适合做合适的基体(甚至形状复杂的预成形件)的涂层材料。通过增加涂层厚度,强度和断裂韧性等综合性能较好的薄膜(3μm)其优异的耐磨性能进一步提高。  相似文献   

11.
不同的刀具涂层具有不同的特性,为了寻找一种综合性能适用于微细刀具表面涂覆的涂层,本文在微细刀具基体材料硬质合金表面涂覆了包括微米金刚石(MCD)、纳米金刚石(NCD)、微纳米金刚石(MNCD)、普通类金刚石(DLC),含氢类金刚石(DLC-H)、四面体非晶碳类金刚石(TaC)薄膜及其复合薄膜在内的16种硬质薄膜。采用扫描电镜、三维白光干涉仪、洛氏硬度计、自制动载荷冲击试验机和摩擦磨损实验机分别表征了薄膜的微观表面和截面形貌、表面粗糙度、静和动载膜基结合强度及干摩擦学性能。实验发现,TaC薄膜虽在静和动载荷作用下,其膜基结合强度逊于DLC和DLC-H薄膜,但其表面光洁度,摩擦学性能明显优于DLC和DLC-H薄膜,可作为优秀的表面涂层。同时,将TaC薄膜与MNCD薄膜相结合,所得的MNCD+TaC薄膜兼具了底层MCD耐磨,中间NCD吸收冲击载荷,表层TaC薄膜光洁的优点,在所有薄膜中具有最低的摩擦系数和磨损率。  相似文献   

12.
高钴硬质合金基底上化学气相沉积金刚石膜的研究   总被引:1,自引:0,他引:1  
通过采用二步浸蚀法对硬质合金(WC-Co12%)刀具进行预处理,应用微波等离子化学气相沉积装置,在经二步浸蚀法预处理过的硬质合金上沉积出高质量和结合力强的金刚石涂层。研究了提高涂层附着力的基体预处理方法,用SEM、XRD、激光Raman光谱分析了涂层质量,用切削试验检测金刚石涂层与刀具基底的附着情况,结果表明二步浸蚀基体预处理方法能有效地降低基体表面金属钴的含量,消除沉积过程中Co的负面影响,从而提高金刚石涂层的附着力,使刀具使用寿命明显提高。  相似文献   

13.
提高CVD金刚石涂层刀具附着力的应用研究   总被引:1,自引:0,他引:1  
陈胜利 《表面技术》2006,35(2):53-54
介绍了影响CVD金刚石涂层刀具附着力的因素,并重点对提高其附着力的工艺措施进行了较深入的研究,对解决刀具基体与金刚石薄膜之间的附着力过小问题有一定的指导意义.  相似文献   

14.
传统硬质合金刀具铣削碳纤维复合材料(CFRP)时磨损严重,需在其上沉积金刚石薄膜涂层。在相同的硬质合金立铣刀基体上,改变沉积工艺,获得3种分别覆有粗晶、细晶和复合晶等不同CVD金刚石薄膜的刀具。用扫描电镜观察分析3种涂层的表面形貌。在相同条件下,用3种刀具切削CFRP并分析其刀具磨损机理。结果表明:复合晶工艺的金刚石涂层硬质合金立铣刀耐磨性最好、使用寿命最长,约为粗晶金刚石涂层铣刀的1.35倍、细晶金刚石涂层铣刀的1.59倍,更适合于CFRP材料的铣削加工。   相似文献   

15.
硬质合金CVD金刚石涂层最新进展   总被引:3,自引:2,他引:1  
金刚石因具有优异的物理化学性能被认为是理想的刀具材料。硬质合金基底上涂覆CVD金刚石薄膜有利于改善刀具的加工性能和寿命,但涂层和基底之间存在热膨胀系数差异以及合金中Co对沉积有不利影响,使得薄膜附着力较差。本文综述了近几年来各种提高CVD金刚石涂层刀具切屑性能的方法,从提高薄膜附着力和改善金刚石膜的质量两个方面进行了讨论。并介绍了国外较先进的CVD金刚石涂层刀具的应用,随着技术的不断成熟,CVD金刚石涂层将会有更为广泛的应用。  相似文献   

16.
金刚石薄膜的附着力是影响CVD金刚石涂层刀具切削性能的关键因素,本文采用EACVD法在硬质合金(YG6)基体上沉积金刚石涂层;用Ar-H2微波等离子WC-C0衬底进行刻蚀处理,以改变基体表面与金刚石涂层间的界面结构,提高金刚石涂层的附着力;采用压痕法评估涂层附着力,借助SEM等观察刻蚀预处理方法对膜基界面的影响,并对此进行分析和讨论。  相似文献   

17.
CVD金刚石涂层硬质合金衬底预处理新方法研究   总被引:2,自引:0,他引:2  
本文研究了甲醇预处理方法对硬质合金衬底表面抑制Co催石墨化作用。将甲醇预处理方法融入到传统的两步处理方法中,提出了新的两步预处理方法,通过电镜和EDX等手段对预处理后的衬底表面形貌、成分进行了分析。采用偏压增强热丝CVD(HFCVD)法,在预处理后的衬底表面成功沉积了金刚石薄膜。并以制做钻头为例,验证了两步法对复杂形状衬底的预处理及金刚石薄膜制备效果。研究结果表明:采用甲醇预处理方法能够有效抑制Co对金刚石薄膜的不利影响,新的两步预处理方法既能保证金刚石薄膜与衬底之间的附着强度,又非常适用于复杂形状整体式回转硬质合金刀具、拉拔模具等衬底,对于拓展金刚石涂层在涂层刀具领域的应用具有一定的参考作用。  相似文献   

18.
目的分析硼掺杂织构金刚石薄膜的微观组织结构和表面质量,并探究刀具基体表面不同织构对薄膜结合强度和切削性能的影响。方法通过热丝化学气相沉积(HFCVD)法,分别在表面有椭圆织构、沟槽织构和无织构的硬质合金刀具上制备硼掺杂金刚石薄膜(BDD)。运用扫描电镜(SEM)观察各薄膜表面及横截面形貌;使用白光干涉表面三维轮廓仪观测各薄膜表面粗糙度;通过拉曼光谱仪检测各薄膜组织结构;通过铣削试验分析各薄膜刀具的切削性能。结果经测试,硼掺杂无织构金刚石薄膜(Boron doped un-textured diamond film,BDUTD film)的粗糙度为299.9 nm,硼掺杂椭圆织构金刚石薄膜(Boron doped elliptical texture diamond film,BDETD film)及硼掺杂沟槽织构金刚石薄膜(Boron doped groove texture diamond film,BDGTD film)的粗糙度分别为333、323.9nm,粗糙度略有增加。三种金刚石薄膜的厚度均为18μm,在相同切削条件下,经过铣削碳/碳-碳化硅(C/C-Si C)复合材料420 s后,BDUTD薄膜的剥落程度及其刀具磨损程度明显大于BDETD薄膜和BDGTD薄膜。结论硬质合金刀具基体表面织构化能够有效提高薄膜的结合强度,从而提高刀具的耐磨性。其中硼掺杂沟槽织构金刚石薄膜的切削性能相对更好,与普通硼掺杂金刚石薄膜刀具相比,硼掺杂织构金刚石薄膜刀具具有更长的使用寿命。  相似文献   

19.
金刚石涂层硬质合金刀具涂层的研究和应用进展   总被引:1,自引:0,他引:1  
通过对硬质合金基体前处理,金刚石涂层形核、生长以及金刚石涂层刀具在加工高硅铝合金、特种石墨和复合材料等材料中的应用的研究分析,揭示出低的金刚石涂层与基体的结合力是涂层刀具失效的主要原因。特种石墨、高硅铝合金和复合材料具有不同的加工特性,加工对应材料所需金刚石涂层类型应有所区别,具有较高结合力的微米/纳米复合涂层是通用性较好的涂层。具有产能大、工艺稳定、刀具质量可靠、生产效率高的成套设备是未来金刚石涂层刀具生产装备的发展方向。  相似文献   

20.
采用偏压增强热丝CVD(HFCVD)法,通过引入惰性气体Ar,在经过甲醇新预处理方法处理后的硬质合金衬底表面成功沉积了微晶/纳米金刚石复合涂层。对金刚石复合涂层的表面形貌、成分、表面粗糙度进行了分析和研究。研究结果表明:新的预处理方法能够提高金刚石薄膜与衬底之间的附着强度。Ar的引入使得金刚石薄膜二次形核率更高,颗粒也更加细小,纳米金刚石复合涂层不但具有高的附着强度,而且具有非常低的表面粗糙度。对于拓展纳米金刚石涂层在精密加工领域中的应用具有一定的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号