首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在实验室中制备了试验用7B04铝合金,经铸造-均质化退火-热轧-中间退火-冷轧后制得7B04铝合金板材,并对合金板材进行了后续固溶时效处理,研究了固溶处理对其组织和性能的影响。结果表明,470 ℃×1 h固溶+120 ℃×21 h时效处理铝合金冷轧板材再结晶明显,有少量晶粒处于伸长状态,除粗大第二相粒子外,未发现细小第二相粒子,综合力学性能较好,抗拉强度为596 MPa,屈服强度为537 MPa,伸长率为14.88%。固溶温度达到480 ℃时,合金再结晶明显,但保温时间不能超过0.5 h,否则合金强度和塑性下降。  相似文献   

2.
固溶和时效是铝合金热处理中重要的环节,综述介绍了固溶与时效处理对7×××系铝合金淬透性的影响。结果表明:在固溶过程中影响淬火敏感性的主要因素为第二相的溶解程度与再结晶组织;单级固溶处理中,在保证不过烧的前提下提高固溶温度有利促进第二相溶解,提高合金淬透性;而双级固溶过程中再结晶组织的尺寸、数目会直接影响合金的淬火敏感性;双级时效处理相比单级处理可以形成高密度GP区,并且在随后的过程中能转化成具有强化效果的η'相,分布更加均匀,减小了合金不同部位性能上的差距;经回归再时效处理后适当减小冷却速度也能有效提高合金性能的均匀性,改善了淬火敏感性。另外,对未来固溶时效制度的发展提出了新的方向。  相似文献   

3.
通过拉伸试验、硬度测试、金相观察等手段试验研究了7A09铝合金双级固溶工艺制度(加热温度和保温时间)对其组织和性能的影响。结果表明,合适的双级固溶热处理可通过使可溶相充分固溶,减少再结晶程度,为后续热处理做组织上的准备;7A09铝合金的最佳双级固溶工艺参数是460℃40 min+500℃30 min,为工业生产7A09铝合金挤压材热处理工艺参数的确定及优化提供参考。  相似文献   

4.
通过光学显微镜、透射电镜以及力学性能测试,研究均匀化制度对7050铝合金板材组织演变的影响。将合金固溶后在不同速率淬火,研究均匀化制度对该合金淬火敏感性的影响。结果表明:固溶后慢速率淬火过程中,平衡相η主要位于再结晶晶粒中Al3Zr粒子的相界、再结晶晶界、亚晶晶界以及亚晶中与位错交互作用的少量Al3Zr粒子上形核析出;均匀化时间较短时(室温,120℃/h升温至465℃,8h),合金中析出少量Al3Zr粒子,固溶后的试样发生完全再结晶,此时合金淬火敏感性最好,但硬度较低;延长保温时间至20h(室温,120℃/h升温至465℃,20h),试样中析出大量Al3Zr粒子,但分布不均匀,从而导致轧制固溶后的试样依然明显再结晶,合金淬火敏感性较差;采用快速升温的双级均匀化制度((室温,120℃/h升温至465℃,20h)+(475℃,8h)),Al3Zr粒子有所长大,淬火敏感性最差;采用慢速随炉升温((室温,18℃/h升温至465℃)+(475℃,8h))的双级均匀化制度,合金中将弥散析出大量细小的Al3Zr粒子,固溶后的再结晶得到有效抑制,较多η相在亚晶界上的非均匀形核析出在一定程度上增加了合金的淬火敏感性,但该制度处理的合金仍优于再结晶程度较高的快速升温双级均匀化制度的。  相似文献   

5.
针对7A04-T6铝合金的二次固溶工艺进行了试验研究。采用光学显微镜、扫描电子显微镜、万能拉伸试验机、显微硬度计等研究了二次固溶处理工艺对7A04铝合金自然时效组织和性能的影响,并讨论了其影响规律和影响机制。研究结果表明:提高固溶温度或延长固溶时间均能显著提高7A04-T6铝合金自然时效后的力学性能;较高的固溶温度有利于缩短达到相同固溶效果所需的固溶时间;当固溶温度超过485℃,且固溶时间超过60 min时,合金的强度、硬度增大,伸长率下降。而固溶温度的提高或时间的延长,合金的第二相面积分数逐渐减小,而平均晶粒尺寸增大,合金组织发生再结晶;固溶温度过高或固溶时间过长,将促进过渡相(θ'相)向稳定相(θ″相)转变,影响合金性能。  相似文献   

6.
研究了双级固溶制度(加热温度和保温时间)变化对7150铝合金组织和性能的影响.结果表明,合适的双级同溶热处理可通过使可溶相充分固溶,减少再结晶的程度,为后续热处理做好组织上的准备;7150合金的最佳双级固溶工艺是:460℃x40min+500℃×30min,为7150铝合金热处理工艺参数的确定及优化提供参考依据.  相似文献   

7.
通过硬度测试、电导率测试以及室温拉伸试验并结合光学显微镜(OM)、扫描电镜(SEM)、差示扫描量热法(DSC)等分析技术,研究了双级固溶(450℃,1 h+495℃,1 h)+双级时效(120℃,8 h+160℃,24 h)工艺对7050铝合金微观组织和性能的影响。结果表明:在其它条件相同的情况下,随着第二级固溶温度的升高,合金中粗大的第二相粒子更多地固溶到基体中,增强了固溶效果;随第二级时效时间的延长,合金出现了双峰时效现象。采用双级固溶+双级时效热处理工艺时,合金的综合性能优良,抗拉强度、伸长率、硬度分别为590 MPa、14.04%、191 HV。  相似文献   

8.
采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射和室温拉伸研究固溶制度对1933铝合金自由锻件组织和力学性能的影响.结果表明:由于Al_3Zr粒子对晶界的钉扎作用,在470 ℃以下固溶时,合金的再结晶程度很低(<15%);随着固溶温度升高,再结晶程度逐渐上升;510 ℃固溶时,合金的再结晶程度显著增大(约为48%);1933铝合金锻件中第二相主要有Al_7Cu_2Fe相和η相;合金经470 ℃固溶60 min后,η相溶解比较充分,此后随温度升高或时间延长第二相变化不大;合金的最佳固溶制度为470 ℃、60 min,在此条件下合金具有最好的力学性能.  相似文献   

9.
利用光学显微镜(OM)、扫描电镜(SEM)及维氏硬度计等研究了不同固溶处理参数对Al-Zn-Mg-Cu系超强铝合金7050固溶态组织与固溶时效态硬度的影响。结果表明:锻态7050铝合金组织中含有粗大块状初生相和针状、点状的η(MgZn2)相。随着固溶温度的升高和固溶时间的增加,合金组织中的未溶相减少,再结晶组织体积分数增高。经过470 ℃×4 h固溶+120 ℃×24 h时效处理7050铝合金的硬度值达到最大,为189 HV0.2。  相似文献   

10.
以7050铝合金及含Er7050铝合金(7E50)为研究对象,对两种铝合金自由锻件进行固溶、时效处理后,采用SEM、TEM与室温拉伸等测试手段研究铝合金锻件固溶及时效处理过程中组织和力学性能的演变规律。结果表明,两种合金经470℃×1 h固溶后,7050铝合金再结晶组织占比69.45%,而7E50合金再结晶占比仅为62.08%,Er元素的加入可以抑制合金的再结晶行为。最佳的单级时效工艺为120℃×24 h,经单级峰时效处理后7E50合金的强度、硬度、伸长率均高于7050合金,由此可见Er元素的加入可以有效提升合金的力学性能。7E50铝合金峰时效态下的析出相主要是η′相、GP区和Al3(Er, Zr)颗粒。两种合金晶界上析出相都呈链状连续分布,但7E50铝合金晶界析出相尺寸明显小于不含Er的7050合金,这可能是7E50合金伸长率高于7050合金伸长率的原因之一。  相似文献   

11.
采用拉伸试验、电导率及硬度测试以及组织观察(光学显微镜和扫描电镜)、能谱分析等方法,研究了双级固溶、双级时效热处理制度下第二级固溶处理温度对7A04铝合金组织和性能的影响。结果表明:随着第二级固溶温度的升高,合金力学性能呈现先上升后下降的趋势,晶粒尺寸不断长大,残余第二相不断减少;合金最佳第二级固溶处理温度为480℃,此时晶粒组织细小,合金的力学性能较好,抗拉强度、规定塑性延伸强度、硬度、伸长率和电导率分别为691 MPa、642 MPa、71 HRB、14.14%、32.16%IACS。  相似文献   

12.
固溶处理对7B04铝合金组织和性能的影响   总被引:1,自引:1,他引:1  
通过显微组织观察、拉伸力学性能测试、XRD衍射物相分析以及α(Al)基体点阵常数的测量等方法研究了固溶处理对7B04铝合金组织和性能的影响.结果表明:在410~470℃范围,随固溶温度升高和时间延长,由于粗大的平衡相逐渐回溶,合金的强度逐渐升高;进一步提高固溶温度或延长固溶时间,合金强度逐步降低.7B04铝合金的优选固溶处理制度为470℃×60 min.  相似文献   

13.
《铸造技术》2017,(12):2854-2857
研究了固溶和时效热处理对锻态7075合金显微组织、硬度和拉伸力学性能的影响,并对断口形貌进行了观察。结果表明,锻态7075合金中的第二相主要为Al7Cu2Fe、η(Mg Zn2)和S(Al2Cu Mg)相;经过固溶处理后,晶界处η(Mg Zn2)相已经回溶至基体中;固溶温度为480℃时组织中存在Al7Cu2Fe相,而η(Mg Zn2)和S(Al2Cu Mg)相消失;随固溶温度升高,合金显微硬度先上升后减小,在470℃时显微硬度最高;随固溶时间延长,显微硬度先上升后降低,在240 min时硬度最大;延长时效时间,合金抗拉强度和屈服强度都有所提高,而断后伸长率略有降低;7075合金经470℃×240 min固溶以及125℃×24 h时效后可以获得良好的强度和塑性。  相似文献   

14.
利用喷射成形技术制备高强度Zn-35Al-3.5Mn-2.2Cu-0.1Mg合金,对合金在不同温度和保温时间下进行固溶处理.用X射线衍射和扫描电镜等手段研究了合金的显微组织,并测定了合金的力学性能.结果表明,双级固溶和单级固溶处理制度相比,前者得到的组织较为理想,再结晶晶粒尺寸较小,同时回溶颗粒较多.采用双级固溶处理(360℃×3 h+390℃×1h和120℃×15 h时效处理)后,合金的抗拉强度和屈服强度分别达到526 MPa和471MPa,伸长率达到9.2%.  相似文献   

15.
研究了双级固溶工艺对于大规格7050-T7451热轧板(160mm)的不同厚度处显微组织的影响。结果表明,双级固溶下,热轧板中粗大相大量回溶。第一级固溶温度从450℃升高到470℃,合金中粗大S相含量影响不大。第二级固溶温度越高,S相含量越低,再结晶分数越高。第二级固溶温度相对保温时间对显微组织的再结晶分数影响更大。厚板经过固溶后不同厚度(H)处显微组织具有一定差异性。不同双级固溶工艺下,厚板表面和H/2处粗大S相完全固溶,但H/2处再结晶分数高于表面和H/4处。  相似文献   

16.
固溶处理对7A55铝合金的组织和力学性能的影响   总被引:2,自引:0,他引:2  
通过组织观察(光学显微镜和扫描电镜)、力学性能检测、电导率测定,研究了单级固溶和双级固溶对7A55铝合金板材组织和力学性能的影响.结果表明:采用最佳单级固溶制度470℃/0.5h和120℃/24h时效处理,其力学性能σb,σ02和δ分别为635MPa,584MPa,和13.1%.与单级固溶处理制度相比,双级固溶处理在再结晶程度较小的情况下,能较大幅度的提高7A55铝合金板材的固溶度.采用双级固溶处理450℃/1.5h 485℃/40min,120℃/24h时效后的力学性能有较大提升,其σb,σ0.2和δ分别达648MPa,630MPa和11.2%,较单级固溶其σ0.2强度提高了7.8%.  相似文献   

17.
热处理对压铸AZ91D合金组织及硬度的影响   总被引:1,自引:0,他引:1  
研究在线淬火、离线固溶处理(420℃×1 h在水中快冷)和时效处理(190℃×4 h空冷)对压铸AZ91D镁合金组织及硬度的影响。结果表明:在线淬火和离线的时效处理可提高压铸AZ91D合金的布氏硬度,但是离线固溶处理使合金硬度下降;在线淬火和时效处理后合金的组织与压铸AZ91D基本相同,仍由α-Mg及β-Al12Mg17组成。在压铸镁合金冷却过程中在线淬火使温度急剧降低,增强了Al元素固溶强化的效果;而时效处理通过Al12Mg17分解后重新析出并细化了晶粒,增强了细晶强化的效果。离线的固溶处理Al12Mg17分解后虽然固溶强化效果增强但是晶界强化相大幅减少,导致合金硬度降低。  相似文献   

18.
《铸造》2015,(12)
研究了固溶处理温度和固溶处理时间对挤压铸造Al17.5Si4Cu0.5Mg0.1Mn合金显微组织及硬度的影响。结果表明:固溶处理后合金的显微组织得到明显改善,硬度大幅度提高。随着固溶温度的增加,共晶Si相逐渐粒化,合金的布氏硬度值逐渐增加,当固溶温度为525℃时,共晶Si相形貌相对圆整,合金具有最大布氏硬度值;随着固溶时间的延长,合金显微组织中的共晶Si相发生熔断、粒化、粗化现象,合金的布氏硬度呈现先上升后下降的趋势,当固溶时间为6 h时,合金的布氏硬度达到最大值HB 124。试验得到的挤压铸造Al17.5Si4Cu0.5Mg0.1Mn合金的最佳固溶处理工艺为525℃,保温时间为6 h。  相似文献   

19.
采用光学显微镜、电子万能试验机、维氏硬度计等对比研究了单级固溶处理与双级固溶处理对7075铝合金显微组织和力学性能的影响。结果表明:相对单级固溶处理,双级固溶处理7075铝合金中第二相粒子可以更为充分的溶入基体,固溶度更高。7075铝合金经460 ℃×1 h+480 ℃×0.5 h双级固溶处理后,组织中第二相粒子体积分数为0.303%,晶粒均匀细小,固溶效果理想。经460 ℃×1 h+480 ℃×0.5 h+120 ℃×24 h固溶时效处理后,7075铝合金硬度、抗拉强度和伸长率分别达到199 HV5、637 MPa和14.1%,综合性能最佳。  相似文献   

20.
采用光学金相、扫描电镜、室温拉伸、显微硬度、导电率和晶间腐蚀试验,研究逐步固溶对7050铝合金组织、力学性能和晶间腐蚀性能的影响。结果表明:逐步强化固溶(400℃×4 h+478℃×1 h)+HLA10(190℃×10 min+120℃×24 h)较常规固溶(478℃×1 h)+HLA10(190℃×10 min+120℃×24 h),显著减小合金再结晶数量和晶粒尺寸;EDS分析未溶的第二相为Al7Cu2Fe和Al2Cu Mg相;合金的抗拉强度由530.6 MPa提高到569.1 MPa,伸长率提高了14%,电导率、硬度数值较高;抗晶间腐蚀等级由3级提高至2级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号