首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
IC10单晶过渡液相扩散焊接头微观组织与力学性能   总被引:2,自引:1,他引:1       下载免费PDF全文
郎波  侯金保  吴松 《焊接学报》2012,33(8):109-112
采用扫描电镜(SEM)和能谱分析仪(EDS)研究IC10单晶高温合金过渡液相(TLP)扩散焊接头微观组织演变.结果表明,接头由连接区和基体区所组成,连接区由等温凝同区和快速凝固区组成.快速凝固区可以通过延长保温时间的方法予以消除.随着保温时间从2h增加到8h,基体内的γ'相尺寸达到了0.9μm.通过限制TLP扩散焊接头内晶界的形成,以及焊后固溶处理的方法可以有效提高接头的力学性能.在温度1000℃下,接头平均抗拉强度为507MPa.在温度1000℃、应力144MPa下接头持久寿命可达到120h以上.  相似文献   

2.
瞬时液相扩散连接过程中由于过渡液相的产生降低了连接过程中所需要的压力,但是压力在瞬时液相扩散连接过程中起着重要的作用,是保证焊接接头质量,提高焊接效率的主要影响因素之一。本文对连接压力在连接过程中排除氧化膜、减少等温凝固时间等作用进行了总结,并对其选择依据和控制原则进行了讨论。  相似文献   

3.
TiNi形状记忆合金与不锈钢的瞬时液相扩散焊   总被引:1,自引:0,他引:1  
采用AgCu金属箔作中间过渡层,对TiNi形状记忆合金与不锈钢进行了瞬时液相扩散焊,分析了接头的显微组织、元素分布和物相组成等,研究了接头的抗剪强度和断裂方式。结果表明:接头界面区由TiNi侧过渡区,中间区,不锈钢侧过渡区组成,主要相分别为Ti(Cu,Ni,Fe),AgCu,TiFe等。连接温度为860℃,保温时间为60min,连接压力为0.05MPa时,接头最大抗剪强度为239MPa。断裂发生在TiNi母材和AgCu中间层扩散界面上,断口为混合断裂形貌。通过中间层等温凝固过程动力学模型,结合界面形貌和元素扩散分析,认为TiNiSMA与不锈钢异种材料瞬时液相扩散焊过程存在明显的非对称性。  相似文献   

4.
Abstract

Transient liquid phase (TLP) bonding of Al2024‐T6 alloy, using gallium (Ga) interlayer, has been investigated. Bonding process was carried out at 470°C for 6?min, and homogenising temperature and time were 495°C and 2?h respectively. Conventional TLP bonding using Ga interlayer was not an appropriate method for joining of Al2024. In this method, the boundary between two Al2024 specimens was not fully eliminated during bonding because of solidification with planar front. In addition, bonding zone was depleted of copper, and as a result, tensile and shear strength of joint decreased to 200 and 110?MPa respectively. TLP bonding under temperature gradient offered very good results in bonding of Al2024. In this method, solidification mechanism change from planar to dendritic, and tensile and shear strength of joint increased to about 460 and 220?MPa respectively. Microstructure of bonding zone changed basically by changing solidification mechanism.  相似文献   

5.
A new Ni-Cr-Si-B-Fe filler material is prepared for transient liquid-phase (TLP) bonding of Inconel 718 superalloy by mechanical alloying technique. The melting temperature range of the filler material and its activation energy of melting are determined by differential scanning calorimetry technique. The activation energy and melting temperature of the alloy powder decrease with increasing milling time. Inconel 718 alloy was joined via TLP by using the newly developed filler material. The effect of TLP bonding temperature and time on microstructural evolution and mechanical properties of the joint was investigated. Three distinct microstructural regions were observed in the bonding area: isothermal solidification zone consisting of a single-phase solid solution, diffusion affected zone consisting of extensive diffusion-induced precipitates of metallic boride, and unaffected base material. The ultimate shear strength and microhardness of the TLP-bonded joint increase with bonding time and temperature.  相似文献   

6.
采用Al及Al-12Si为中间层对AZ31B镁合金进行过渡液相扩散焊,用环境扫描电镜及万能试验机测试并分析了接头组织与强度之间的关系。研究结果表明:采用Al作为中间层时,随着保温时间的增加,Al12Mg17金属间化合物含量降低,接头强度升高;采用Al-12Si作为中间层时,含硅相Mg2Si对焊缝的强化提高了接头强度,但保温时间过长时,Mg2Si偏聚于焊缝中心会降低接头性能。  相似文献   

7.
Microstructure of transient liquid phase( TLP) diffusion bonded a third generation single crystal superalloy joint was investigated using scanning electron microscopy( SEM),and mechanical properties test of joint was carried out,for obtaining relationship between microstructure and mechanical properties of joint. The results showed that the joint contained bonding zone and base metal. The diffusion zone was obviously observed. When it was not finished for isothermal solidification process,the bonding zone would contain isothermal solidification zone and rapid solidification zone. Metallographic examination revealed that isothermal solidification zone was consisted of γ and γ' phase. Rapid solidification zone was consisted of two different structures,which were ternary eutectic of borides,γ and γ' phase developing at the edge of joint,binary eutectic of γ and γ' phase appearing in the portion of joint. When it was not enough for homogenization process under the condition of finishing isothermal solidification process,the bonding zone would contain isothermal solidification zone and borides at the interface. Under the conditions of relatively high welding temperature and long welding time,average tensile strength of joint was equivalent to that of parent material.  相似文献   

8.
The effect of joining temperature on the transient liquid phase (TLP) bonding of MA758 superalloy was investigated. The TLP bonds were made at temperatures of 1100 and 1200 °C. Analysis was undertaken to determine the changes within the joint microstructure. The bonding temperature affected the extent of parent metal dissolution, the time for isothermal solidification, and the attainment of microstructural continuity across the joint region. Bonding at 1100 °C did not result in extensive parent metal dissolution, and subsequent shear testing showed failure through the center of the joint. However, bonding at 1200 °C increased parent metal dissolution resulting in significant agglomeration of Y2O3 particles at the joint interface. Failure was observed along the joint interface in regions depleted of strengthening particles. Bonding at a higher temperature reduced the time for isothermal solidification but also reduced the strain energy of the oxide dispersion-strengthened alloy so that grain growth across the joint region could not be achieved.  相似文献   

9.
采用有限元差分法模拟FSX-414/MBF80/IN738体系异种瞬时液相(TLP)连接的等温凝固过程。将TLP连接模型分为2部分,并运用一个移动的液/固界面模型来研究他们。使用扩散方程对每部分接头进行预测,直到等温凝固过程结束;分别预测了这2部分的等温凝固完成时间、浓度分布曲线和固/液界面位置,认为这2部分固/液界面的交点是等温凝固的终点。为了获得一些必要的扩散数据,在不同温度、时间和真空条件下进行FSX-414/MBF80/IN738体系的瞬时液相连接实验。结果表明,实验结果与预测结果一致。  相似文献   

10.
The effects of joining temperature (TJ) and time (tJ) on microstructure of the transient liquid phase (TLP) bonding of GTD-111 superalloy were investigated. The bonding process was applied using BNi-3 filler at temperatures of 1080, 1120, and 1160 °C for isothermal solidification time of 195, 135, and 90 min, respectively. Homogenization heat treatment was also applied to all of the joints. The results show that intermetallic and eutectic compounds such as Ni-rich borides, Ni−B−Si ternary compound and eutectic-γ continuously are formed in the joint region during cooling. By increasing tJ, intermetallic phases are firstly reduced and eventually eliminated and isothermal solidification is completed as well. With the increase of the holding time at all of the three bonding temperatures, the thickness of the athermally solidified zone (ASZ) and the volume fraction of precipitates in the bonding area decrease and the width of the diffusion affected zone (DAZ) increases. Similar results are also obtained by increasing TJ from 1080 to 1160 °C at tJ=90 min. Furthermore, increasing the TJ from 1080 to 1160 °C leads to the faster elimination of intermetallic phases from the ASZ. However, these phases are again observed in the joint region at 1180 °C. It is observed that by increasing the bonding temperature, the bonding width and the rate of dissolution of the base metal increase. Based on these results, increasing the homogenization time from 180 to 300 min leads to the elimination of boride precipitates in the DAZ and a high uniformity of the concentration of alloying elements in the joint region and the base metal.  相似文献   

11.
采用铜箔/90W-10Ni(质量分数)混合粉末/镍箔多中间层,在加压5 MPa、连接温度1150°C、保温60 min的工艺条件下,对纯钨(W)和0Cr13Al铁素体不锈钢进行真空扩散连接。利用SEM、EDS、电子万能试验机及水淬热震实验等手段研究接头的微观组织、成分分布、断口特征、力学性能及抗热震性能。结果表明,连接接头由钨母材/Cu-Ni合金层/W-Ni复合材料层/镍层/钢母材五部分组成。接头中的W-Ni复合材料层由90W-10Ni混合粉末固相烧结而生成,其组织均匀、致密。W-Ni复合材料层与钨母材以瞬间液相扩散连接机制来实现良好结合。接头剪切强度达到256 MPa,断裂均发生在W-Ni复合材料层与镍层的结合区域,断口形貌呈现为韧性断裂。经过60次700°C至室温的水淬热震测试,接头无裂纹出现。  相似文献   

12.
分别采用瞬时液相扩散焊(TLP)和TIG+MIG对T91钢管进行焊接,通过对比试验,分析了TLP和TIG+MIG焊接接头在力学性能和显微组织上的差异.结果表明:采用TLP焊接T91钢管时,接头抗拉强度和抗弯强度均强于TIG+MIG焊接;接头组织更加均匀细小,与母材接近.得出更低的焊接温度、更短的高温停留时间、合金元素均匀扩散和等温凝同使得TLP焊接接头性能优于TIG+MIG焊接接头.  相似文献   

13.
Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times from 5 min to 50 min at bonding temperature of 510 ℃ , the average concentration of copper in the bonded zone decreased, the microstructure in the zone changed from Cu, α-Mg and CuMg2 to α-Mg, CuMg2 and TiC, and mechanical properties of the joint increased. The shear strength of the joint bonded at 510 ℃ for 50 min reached 64 MPa due to the metallurgical bonding of the joint and improving its homogeneity of composition and microstructure. It is favorable to increase the bonding time for improving mechanical properties of TLP bonded magnesium MMC joint.  相似文献   

14.
Transient liquid phase (TLP) bonding of Mg-AZ31 and Ti-6Al-4V alloys was performed using pure thin Ni electro-deposited coat interlayer (12 μm). The effect of bonding temperature, time and pressure on microstructural developments and subsequent mechanical properties across joint interface was studied at a temperature range from 500 to 540 °C, bonding time from 1 to 60 min and bonding pressure from 0 to 0.8 MPa. The mechanisms of bond formation varied across the joint region, with solid-state diffusion dominant at the Ti-6Al-4V interface and eutectic diffusion at the Mg-AZ31 interface. Joint microstructure was examined by scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). X-ray diffraction (XRD) was used to detect the formation of intermetallic phases at the fracture surface. The maximum joint shear strength of 61 MPa was obtained at a temperature of 520 °C, 20 min and at a bonding pressure of 0.2 MPa. This joint strength was three times the bond strength reported for joints made using adhesives and represents 50% of the Mg-AZ31 alloy shear strength.  相似文献   

15.
Cu中间层SiCp/Al MMCs TLP扩散连接过程分析   总被引:6,自引:0,他引:6  
采用铜箔作中间层,在连接温度为853 K、无压的条件下进行了瞬间液相连接,对TLP扩散连接过程及其动力学模型进行了分析,并对试验结果进行了的验证.结果表明TLP扩散连接理论模型和试验结果之间还存在着一些差异,对等温凝固过程还需要进一步探讨.分析认为,AlMMCs中大量的晶界、亚晶界、位错等短路扩散通道的存在,直接影响TLP连接过程及其动力学.  相似文献   

16.
孙妍  张杰  刘春凤 《焊接学报》2017,38(6):61-64
采用BNi68CrWB钎料粉末对K24和GH648异种高温合金进行钎焊连接,分析了接头典型界面组织,提出了钎焊过程反应机理.结果表明,接头由共晶区、等温凝固区和扩散区组成.共晶区由WB,CrB和镍基固溶体组成,等温凝固区为镍基固溶体,GH648侧扩散区由WB,WxBy,CrxBy,以及沿晶界析出的镍基固溶体和少量的Cr2Ni3相组成,K24侧扩散区与母材差异不明显.钎焊过程由元素富集、母材溶解、等温凝固和共晶凝固四个阶段组成.其中等温凝固阶段是钎焊过程中最关键的阶段,等温凝固不完全时,钎缝中央存在共晶组织,影响接头性能.钎焊温度1 150℃,保温120 min时,等温凝固完全,接头组织均匀,力学性能最优,室温拉剪强度可达323 MPa.  相似文献   

17.
以铜和Cu-Ti作为中间层的TiAl/GH3536扩散焊   总被引:1,自引:1,他引:0       下载免费PDF全文
采用铜箔和Cu-Ti合金作为中间层进行了TiAl和GH3536的扩散焊试验.以铜箔作为中间层在935℃/10 MPa/1 h参数下获得的焊缝组织以Ti(Cu,Al)2,AlCu2Ti和AlNi2Ti相为主,焊缝中存在裂纹.接头室温平均抗剪强度仅有31 MPa.以Cu-Ti合金作为中间层在935℃下采用三种不同参数进行了TiAl和GH3536的液相扩散焊试验.当加压3 MPa,保温10 min时,扩散焊缝中央还存在着宽度约5μm的残留相.保温时间延长至1 h,焊缝形成了较为均匀的分层组织,获得的接头室温抗剪强度最高,达180 MPa.增大压力至20 MPa,保温2 h获得的接头中出现AlNi2Ti相,接头平均室温抗剪强度下降至90 MPa.  相似文献   

18.
Plastic deformation was newly introduced in transient liquid phase (TLP) diffusion bonding of steel sandwich panels. The effect of plastic deformation on bonding strength was investigated through lab experiments. It was assumed that three factors, including newly generated metal surface area, deformation heat, and lattice distortion, contribute to the acceleration of interface atoms diffusion and increase of diffusion coefficients. A numerical model of isothermal solidification time was developed for TLP bonding process under plastic deformation and applied to carbon steel sandwich panels bonding with copper interlayer. A reasonable isothermal solidification time was obtained when an effective diffusion coefficient was used. Based on lab experiments, the effects of plastic deformation on interlayer film thickness and isothermal solidification time were studied through theoretical calculation with the new model. The evolution of interlayer film thickness indicates a good agreement between the calculation and experimental measurement. The results show that the isothermal solidification time is obviously reduced due to the effect of plastic deformation. Furthermore, a new steel sandwich cooling panel for heat exchanger was fabricated by TLP diffusion bonding under 13.1% plastic deformation. The test results suggest that a steel sandwich panel of inequidistant fin structure can provide enhanced heat transfer efficiency.  相似文献   

19.
Transient liquid phase bonding (TLP) of a nickel base superalloy, Waspaloy, was performed to study the influence of holding time and temperature on the joint microstructure. Insufficient holding time for complete isothermal solidification of liquated insert caused formation of eutectic-type microconstituent along the joint centerline region in the alloy. In agreement with prediction by conventional TLP diffusion models, an increase in bonding temperature for a constant gap size, resulted in decrease in the time, tf, required to form a eutectic-free joint by complete isothermal solidification. However, a significant deviation from these models was observed in specimens bonded at and above 1175 °C. A reduction in isothermal solidification rate with increased temperature was observed in these specimens, such that a eutectic-free joint could not be achieved by holding for a time period that produced complete isothermal solidification at lower temperatures. Boron-rich particles were observed within the eutectic that formed in the joints prepared at the higher temperatures. An overriding effect of decrease in boron solubility relative to increase in its diffusivity with increase in temperature, is a plausible important factor responsible for the reduction in isothermal solidification rate at the higher bonding temperatures.  相似文献   

20.
单晶高温合金的过渡液相扩散焊   总被引:1,自引:1,他引:0       下载免费PDF全文
郎波  侯金保  郭德伦  吴松 《焊接学报》2015,36(12):93-96
为了探明单晶过渡液相(TLP)扩散焊接头组织与性能的关系,采用扫描电镜(SEM)研究接头微观组织,并进行力学性能测试. 结果表明,接头由连接区和基体区所组成. 当等温凝固过程未完成时,连接区由等温凝固区和快速凝固区组成,而等温凝固区主要由γγ'相组成,快速凝固区主要是由共晶组织组成. 当等温凝固完成而固态均匀化过程不充分时,连接区由等温凝固区和分布在接头中心的硼化物相组成. 采用低温等温凝固,高温固态均匀化的焊接工艺可以获得高性能的接头.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号