首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高能球磨掺杂氧化物粉体和压敏陶瓷粉体2种不同制备技术制备ZnO-Bi2O3压敏陶瓷,通过扫描电镜和X-射线衍射对其显微组织和相成分进行分析,探讨不同高能球磨制备技术对氧化锌压敏陶瓷电性能和显微组织的影响。结果表明:压敏陶瓷粉体高能球磨是制备高性能氧化锌压敏陶瓷的一种优异的技术,在1000°C下烧结3h,压敏陶瓷的电位梯度为617V/mm,非线性系数为57;压敏陶瓷的致密度高达95%,显微组织均匀、致密;高能球磨压敏陶瓷粉体可细化晶粒,增强烧结驱动力,加速烧结过程,降低烧结温度。  相似文献   

2.
研究溶胶-凝胶法制备不同浓度Y2O3掺杂对ZnO-Bi2O3压敏薄膜微观结构和电性能的影响。研究结果表明:Y2O3掺杂ZnO薄膜在750°C空气气氛下退火1h,ZnO薄膜的特征峰与ZnO的六方纤锌矿结构相匹配;ZnO晶粒直径随着掺杂量的增加而减小,Y2O3稀土掺杂氧化锌晶粒细化;薄膜厚度均匀且每一层厚度约80nm。研究结果还表明:当Y3+掺杂浓度为0.2%(摩尔分数)时,ZnO薄膜的非线性伏安特性最好,其漏电流为0.46mA,电位梯度为110V/mm,非线性系数为3.1。  相似文献   

3.
研究溶胶-凝胶法制备不同浓度Y2O3掺杂对ZnO-Bi2O3压敏薄膜微观结构和电性能的影响。研究结果表明:Y2O3掺杂ZnO薄膜在750°C空气气氛下退火1h,ZnO薄膜的特征峰与ZnO的六方纤锌矿结构相匹配;ZnO晶粒直径随着掺杂量的增加而减小,Y2O3稀土掺杂氧化锌晶粒细化;薄膜厚度均匀且每一层厚度约80nm。研究结果还表明:当Y3+掺杂浓度为0.2%(摩尔分数)时,ZnO薄膜的非线性伏安特性最好,其漏电流为0.46mA,电位梯度为110V/mm,非线性系数为3.1。  相似文献   

4.
以ZnO粉末为主要原料,以TiO2、Bi2O3、MnO2、Co2O3、Sb2O3为组元,在常规电子陶瓷生产工艺下制备低压化ZnO压敏陶瓷。将掺杂TiO2的陶瓷片与未掺杂TiO2的陶瓷片进行对比分析,确定最佳掺杂量。采用能谱仪分析瓷片的微区成分,采用SEM观察瓷片断口形貌,利用压敏电阻直流参数仪测量瓷片的电学性能。研究结果表明,瓷片内部主要存在富Bi晶界、Bi贫化晶界和晶粒直接接触晶界;TiO2对ZnO晶粒有助长作用,不掺杂纳米TiO2陶瓷是11.4μm,掺杂纳米TiO2高达30.5μm;当TiO2掺杂量为1.5%mol时瓷片电学性能较优,即压敏电压为31.2 V/mm、漏电流为0.028 m A及为非线性系数为20.1。  相似文献   

5.
研究烧结温度的细微变化对V-Mn-Nb-Gd共掺杂氧化锌陶瓷显微组织、电性能、介电性能和衰减行为的影响。随着烧结温度的升高,烧结球团密度由5.54 g/cm3降低到5.42 g/cm3,平均晶粒尺寸由4.1μm增大至11.7μm,击穿场强由7138 V/cm急剧降低至920 V/cm。在900°C烧结的压敏陶瓷呈现极佳的非线性(非欧姆)特性,其非线性系数和漏电流密度分别为66和77μA/cm2。在性能稳定性方面,在85°C、24 h和0.85E1 m A的直流加速应力下,经900°C烧结的压敏陶瓷呈现最强的加速衰减特性,且其ΔE1 mA=-9.2%。  相似文献   

6.
采用传统陶瓷工艺制备了不同ZrO_2含量(0%~2.0%,质量分数)的ZnO-Pr6O11-CoO-Cr_2O_3基压敏陶瓷。这些陶瓷在1300℃下经2 h烧结而成。X-射线衍射分析表明,掺入的ZrO_2在高温下会和Pr6O11反应生成Pr2Zr2O7。扫描电镜观察表明,掺入ZrO_2后ZnO晶粒的生长受到了抑制。由于ZrO_2掺杂,所得压敏电阻的压敏电压逐渐增大,这可能是因为ZnO晶粒减小之故。随着ZrO_2掺杂量的增加,所得压敏电阻的非线性系数先增大后减小,当ZrO_2掺杂量为0.5mol%时,非线性系数最大,达到17,此时的压敏电压为623 V/mm。而在所设计的实验条件下,当ZrO_2掺杂量为2.0 mol%时,压敏电压最高为1490 V/mm,非线性系数为10。  相似文献   

7.
报道了一种以掺杂物溶液包裹ZnO粉末制备高性能ZnO低压压敏陶瓷的新方法。采用该方法与常规固相反应法分别制备了低压ZnO压敏复合粉体。运用XRD、SEM手段对两种方法制备的粉体及烧结试样进行了表征,并对烧结试样密度及电学性质进行了测定。结果显示:与固相反应法所制试样相比,溶液包裹法制得的试样的ZnO晶粒显著变大,均匀性和致密性也得到明显改善;梯度电压明显降低,非线性系数提高,漏电流减小,实用性大幅度提高。可见,这种新颖的溶液包裹方法较常规固相反应法更适合于ZnO低压压敏陶瓷的制备。分析认为,溶液包裹法的这些优点归因于制备过程中掺杂物包裹层的纳米效应导致的ZnO陶瓷微观结构均一性的提高。  相似文献   

8.
研究了对ZnO压敏陶瓷微观结构和压敏电压梯度的影响。研究发现,Sb_2O_3掺杂可有效提高ZnO压敏陶瓷的压敏电压梯度,但Sb_2O_3掺杂太多会使材料的非线性特性劣化。SiO+2掺杂也可显著提高ZnO压敏陶瓷的压敏电压梯度,除了提高压敏电压梯度外,SiO_2掺杂还可改善材料的电压非线性特性。MgO掺杂可进一步提高材料的压敏电压梯度。当Sb_2O_3,Si O2和Mg O掺杂量分别为2.8 mol%,0.3 mol%和0.2 mol%时,获得了压敏电压梯度、电压非线性系数和漏电流分别为470 V/mm,89和0.12μA的高梯度压敏陶瓷材料,该材料可承受峰值电流密度为2.7 k A/cm2的8/20μs波脉冲电流冲击。  相似文献   

9.
研制了添加预制ZnO籽晶的ZnO Bi2 O3 TiO2 Sb2 O3系压敏陶瓷 ,测量了添加不同含量籽晶的ZnO陶瓷的压敏电压 (V1mA)、非线性系数 (α)和漏电流 (IL)等电学性能参数 ,采用XRD和SEM研究了籽晶对ZnO压敏陶瓷微观结构的影响。研究结果表明 ,籽晶的含量对晶粒的生长状况以及Ti4 离子的分布状况都具有显著的影响 ,当ZnO籽晶添加量为 1 0 %时可获得压敏性能最为优化的ZnO陶瓷。  相似文献   

10.
研究了烧结温度对WO_3系电容-压敏复合陶瓷显微结构、非线性电学性能及介电性能的影响.随着烧结温度从1050 ℃到1200 ℃的升高,WO_3陶瓷的晶粒尺寸增大,压敏电压随之降低.在1150 ℃烧结条件下,掺杂0.8 mol% Y_2O_3 的WO_3 压敏陶瓷样品表现出优良的综合电性能,其非线性系数为3.5,相对介电常数为1.13×10~4.然而,过高的烧结温度,不利于样品的非线性电学性能.WO_3系电容-压敏复合陶瓷较适合的烧结温度为1150 ℃,这是因为,在此温度下最有利于样品的晶界势垒结构的形成.  相似文献   

11.
采用常规固相法制备了(Sr,Ba,Ca)TiO3基压敏陶瓷.研究了等摩尔量的Y,Nb分别施主掺杂或Y和Nb共掺时对压敏陶瓷结构和性能的影响.结果表明,在其他条件不变的情况下,当Y和Nb等量共掺时,(Sr,Ba,Ca)TiO3基压敏陶瓷可获得较好的电性能V1mA=12.2V·mm-1,α=13.6,εr=2.8×105,tanδ=0.103.  相似文献   

12.
采用裸烧、盖烧和埋烧等不同的烧结方式制备ZnO-Bi2O3压敏瓷,通过XRD和SEM等方法对压敏瓷的物相和显微组织进行研究,探讨烧结方式对氧化锌压敏瓷电性能和显微组织的影响。结果表明:烧结方式和烧结温度对压敏瓷的显微组织和电性能产生明显的影响。对于裸烧、盖烧和埋烧来说,1100℃均为最佳的烧结温度;1000℃时埋烧得到的压敏瓷的电性能较好,1100℃和1200℃时裸烧得到的压敏瓷的电性能较好;烧结方式对于Bi2O3挥发控制的强弱顺序为埋烧、盖烧、裸烧。  相似文献   

13.
采用固相合成法制备了(1–x)LiNbO3-x BiAlO_3(x=0,0.01,0.03,0.05,0.07)无铅压电陶瓷。研究了BiAlO_3对Li NbO_3陶瓷的物相结构、显微组织、介电及压电性能的影响。研究表明:当掺杂量为0.01时,所得陶瓷为纯相钙钛矿结构,当掺杂量超过0.03时出现杂相。所得陶瓷的相对密度均在96%以上,具有较好的致密度。随BiAlO_3含量的增加,晶粒尺寸略有增大。BiAlO_3的加入使复介电常数的共振峰有向低频方向移动的趋势。压电及介电性能的变化规律与晶粒尺寸变化一致,即随BiAlO_3含量的增加,d33和复介电常数的实部ε′均在x=0.07时出现最大值。因此,适量添加BiAlO_3可以增加LiNbO_3陶瓷的介电性能与压电性能。  相似文献   

14.
ZnO压敏陶瓷的制备及电性   总被引:3,自引:0,他引:3  
黄可龙  彭斌  潘春跃 《金属学报》1998,34(7):774-778
用共沉淀法制取了颗粒均匀的掺杂ZnO粉,其pH值为6.90±0.05,预烧温度为500℃,煅烧温度为1100℃,所制ZnO压敏陶瓷的电阻-温度性能稳定,非线形系数高达50以上通过扫描电镜、红外光谱及X射线衍射等手段,对所制粉体进行了表征,并对ZnO掺杂的导电机制进行了初步分析.  相似文献   

15.
以ZnO粉末为主要原料,添加TiO2、Bi2O3、MnO2、Co2O3、Sb2O3为组元,在不同烧结温度(1100~1250℃)与保温时间(1.0~2.5h)下制备ZnO压敏陶瓷。采用SEM观察陶瓷形貌,利用压敏电阻直流参数仪测试陶瓷的电学性能,研究烧结温度与保温时间对陶瓷结构和性能的影响。结果表明,随烧结温度升高,压敏电压、漏电流逐渐降低,而非线性系数先减小后增加。制备ZnO压敏陶瓷的适宜烧结温度与保温时间分别为1250℃、1h,压敏电压为17.0V/mm、漏电流为0.014mA、非线性系数为14.2,陶瓷内部晶粒可长大至128.7μm。  相似文献   

16.
研究了TiO2掺杂浓度对SnO2-Bi2O3-Nb2O5-Sb2O3-MnO基压敏陶瓷非线性特性的影响.利用X射线衍射(XRD)与扫描电镜对相组成和微结构的分析表明:TiO2的添加没有新的相生成.随着TiO2含量的增加,密度与晶粒尺寸均明显减小,压敏电压(EB)以及非线性系数(α)随TiO2掺杂量的增加而增加.当掺杂浓度为3%,烧结温度为1250℃时样品具有最高的压敏电压(EB=1169 V/mm)和非线性系数(α=56).  相似文献   

17.
采用共沉淀BaTiO3为基,适量掺杂Nd2O3稀土氧化物及MgO与ZnO添加剂,获得具有X7R温度特性的低频高压MLC瓷料系统,BaTiO3基瓷的平均晶粒尺寸小于0.8μm,居里点弥散成为居里区.其介电性能为介电系数ε≥3000;容量变化率△C/C≤±15%;介电损耗tgδ≤120×10-4;体积电阻率ρv≥1012Ω·cm;击穿场强Eb≥15 kV/mm.  相似文献   

18.
采用传统陶瓷工艺制备得到了掺杂不同含量Fe_2O_3(0 mol%~0.1 mol%)的TiO_2-Ta_2O_5基压敏陶瓷,并研究了Fe_2O_3添加量对TiO_2-Ta_2O_5基压敏陶瓷组成和结构的影响。实验结果表明,掺杂的Fe_2O_3可以进入Ti O2晶格中,且在样品中没有观察到第二相。电流-电压(I-V)特性曲线测试表明,TiO_2-Ta_2O_5基压敏陶瓷非线性系数随着Fe_2O_3掺杂量的增加略微下降,从3.9下降到3.6;压敏电压随着Fe_2O_3掺杂量的增加而增大,从23 V/mm增大到229 V/mm。  相似文献   

19.
镀液中稀土掺杂对镍基化学镀的影响   总被引:2,自引:2,他引:0  
张敬尧  杨秋菊 《表面技术》2012,(6):44-46,50
在酸性镍基化学镀液中掺杂稀土离子Y3+,Nd3+或La3+,研究了稀土对镀液稳定性、沉积速度及镀层性质(组织结构、显微硬度和耐蚀性能)的影响。结果表明:添加微量稀土即能提高镀液稳定性和沉积速度,其中Y3+的效果最明显,而La3+的效果最差;稀土应用于化学镀中可有效细化镀层晶粒,提高镀层硬度和耐蚀性。  相似文献   

20.
通过传统陶瓷工艺,在1350℃下烧结得到了不同稀土Pr6O11掺杂水平的ZnO-Pr6O11-Co3O4-TiO2压敏电阻材料,研究了Pr6O11掺杂水平对压敏电阻材料微观结构和电学性能的影响。结果表明:随着Pr6O11掺杂水平的变化,样品相组成没有发生变化,样品由ZnO、Pr6O11、Zn2TiO4和PrTiO34种相组成;Pr6O11掺杂既能促进样品烧结致密,还可抑制ZnO晶粒的生长;在Pr6O11掺杂量不超过2.0mol%时,Pr6O11掺杂水平提高可提高样品压敏电压,在Pr6O11掺杂量不超过1.5mol%时,Pr6O11掺杂水平提高可提高样品非线性系数,降低漏电流。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号