首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
实验采用了热压烧结的方法制备了1~25vol%片层石墨(Gr)含量的Gr/6061Al复合材料,并采用了纳米铝粉包覆片层石墨的混粉工艺提高片层石墨在铝基体粉末中的分散均匀性。所制备的复合材料中,片层石墨均匀分散在铝基体中,界面结合良好,未发现界面反应产物的存在,通过透射电镜观察到了少层石墨烯的存在。1~15vol% Gr含量的Gr/6061Al复合材料的致密度均高于90%;复合材料的致密度和摩擦系数随着片层石墨含量的增加具有相同的变化趋势,都逐渐降低;石墨含量从1vol%增加到25vol%时,复合材料摩擦系数(COF)呈逐渐降低的趋势;与1vol.%Gr含量的Gr/6061Al复合材料相比,其他Gr含量的复合材料的磨损率均较高。  相似文献   

2.
刘少辉  王娇  王菲菲  王远 《表面技术》2023,52(8):346-354
目的 通过开发出工作场强更高、储能效率更高的电介质储能材料,从而提高电力设备的性能、减小电力设备体积。方法 采用静电纺丝工艺结合溶胶凝胶工艺制备具有一维核壳结构的SrTiO3@Al2O3纳米纤维填料,并结合流延成型工艺制备出聚偏氟乙烯(PVDF)电介质复合材料。系统地研究了SrTiO3纳米纤维填料表面包覆Al2O3对PVDF电介质复合材料界面极化、介电性能、储能性能的影响。结果 制备的一维纳米填料具有良好的核壳结构,其中芯层为SrTiO3,壳层为Al2O3, Al2O3包覆厚度为6 nm。低填充量下,一维核壳结构SrTiO3@Al2O3纳米纤维填料均匀地分散在PVDF基体中。在相同的体积分数填料填充下,SrTiO3@Al2O3纳米纤维/PVDF复合材料表现出更低的介电损耗和漏电流、更强的耐击穿场强、以及更高的储能密度和放电效率。SrTiO3@Al2O3纳米纤维/PVDF电介质复合材料的最大储能密度达到8.9 J/cm3。结论 Al2O3包覆层可以阻止SrTiO3纳米纤维填料在复合材料中的接触,减小Maxwell-Wagner-Sillars界面极化,降低漏电流,进而提高复合材料薄膜的击穿强度和储能性能。  相似文献   

3.
三层涂层柔性复合材料介电性能和力学性能   总被引:4,自引:0,他引:4  
研究了铁氧体含量、碳化硅含量、石墨含量对三层涂层复合材料介电常数的影响,在上述实验基础上制备了介电性能最佳的涂层复合材料,并测试了该复合材料的剪切、拉伸、弯曲性能。结果表明:铁氧体含量为60%,碳化硅含量为36%,石墨含量为24%时,铁氧体/碳化硅/石墨三层涂层复合材料的介电性能良好;该复合材料具备良好的剪切、拉伸、弯曲性能。  相似文献   

4.
研究不同氧化锌(ZnO)含量的氧化锌-聚吡咯复合材料在200 Hz~5 MHz频率区间的非线性性能和频率特性。用热压法在130℃下制备样品。结果表明,当ZnO含量为70%时,击穿电压最小。击穿电压先从590 V降低到380 V,后从450 V增加到740 V,这是由于在晶界处没有聚吡咯。与击穿电压的变化不同,非线性系数随氧化锌含量的增加从4.2增加到9,这是由于随氧化锌含量的增加,晶界处的受主能级增加。电学参数如介电常数、介电损耗和样品的串联电阻对频率的依赖性很强,特别是在1 k Hz以下,这些参数随频率增加而下降,这与晶界上通过肖特基势垒的电荷传输有关。样品在1 kH z以下的高介电常数与晶界处的麦克斯韦-瓦格纳(Maxwell-Wagner)极化有关。在不同频率间隔区间存在不同的常数异常变化的现象,这与界面极化有关,是由于晶粒和晶界层结构的不同,导电性差异较大。  相似文献   

5.
采用化学气相渗透法制备含热解碳界面层的SiCf/SiC复合材料,研究热氧化对复合材料在8.2~12.4 GHz波段的介电和吸波性能影响。复介电常数的实部和虚部在氧化后都降低。当氧化100 h后,反射损耗超过-10 d B的波段范围为9.7~11.9 GHz,且反射损耗最小值在11.0 GHz时达到-11.4 dB。复合材料的弯曲强度在氧化后降低,但断裂韧性明显提高。结果表明:含热解碳界面层的SiCf/SiC复合材料氧化后具有很好的吸波性能和断裂韧性。  相似文献   

6.
玻璃陶瓷复合材料的制备、微结构和性能   总被引:1,自引:2,他引:1  
采用电子陶瓷工艺制备了一系列玻璃/锶长石陶瓷复合材料,并对复合材料进行X射线衍射分析、扫描电镜观察和性能测试。结果表明:复合材料的介电常数、热膨胀系数和显微硬度随着锶长石含量的增加而增加,而介电损耗随锶长石含量的增加而减小。锶长石含量大于50%(质量分数)的复合材料中α石英和方石英的析出增加了材料的热膨胀系数,但对材料的介电性能影响不大。所制备的复合材料具有低的介电常数(5.2~5.8)、低的介电损耗(0.10%~0.25%)、低的热膨胀系数(4.4×10-6~6.2×10-6℃-1)和低的烧结温度(≤900℃),有望用于电子封装领域。  相似文献   

7.
金属陶瓷复合材料是由金属或合金与陶瓷相组成的非均质复合材料。由于金属和陶瓷的电导率、磁导率具有较大的差异,金属陶瓷复合材料表现出独特的电磁性能。以Al2O3和Fe2O3粉体为原料,通过高能球磨、无压烧结和选择性还原工艺,成功制备出不同组分的Fe/Al2O3复合材料,利用XRD、SEM对复合材料的物相组成及微观形貌进行分析和观察。结果表明:还原后样品的主晶相为(FexAl1-x)2O3固溶体和Fe3O4,并且出现了亚微米级粒度的Fe颗粒。利用阻抗分析仪对样品的介电性能的研究(测试频率为10MHz~1GHz)表明,材料的介电常数实部和虚部均随着频率增加而下降,并且随着原料中Fe2O3含量的增加而呈上升的趋势,这种介电常数增大的现象主要由界面极化引起。  相似文献   

8.
介电电容器因具有功率密度高、充放电速度快和循环寿命长等优点,在脉冲功率武器装备、输变电工程和5G通讯等方面具有广阔的应用前景。聚丙烯(PP)具有高抗击穿强度、低介电损耗和良好的可加工性,是目前商业应用最广泛的介电材料之一,但其介电常数低,储能密度难以提高,很大程度上限制其应用。基于PP的复合或者改性可以有效提高其储能密度,因而成为当前的研究热点。本文综述近年来介电复合材料的分类和存在的问题,将填料/聚合物复合材料和全有机复合材料两种合成策略与PP的储能性能提升联系起来,从无机陶瓷填料/PP、导电填料/PP、核-壳结构填料/PP、三元复合材料、交联、共混、多层结构设计等方面重点讨论PP基介电复合材料的研究进展。最后总结开发高性能PP基介电复合材料面临的挑战,对未来研究进行展望。  相似文献   

9.
0-3型改性PZT/IPN压电复合材料的制备和性能研究   总被引:1,自引:0,他引:1  
以溶胶-凝胶法制备改性PZT纳米陶瓷粉体,粉体直径50nm左右。以改性PZT陶瓷粉体为压电相,以同步法制备的互穿聚合物网络(IPN)为基体相,采用溶液混合法制备0-3型改性PZT/IPN复合材料。采用自制极化装置对复合体系进行电晕极化,极化电压为9.5kV、极化温度为100℃、极化时间为45min。对不同改性PZT含量的复合材料介电、压电性能检测结果表明:复合材料介电性能和压电性能介于有机和无机体系之间。随着PZT陶瓷含量的增加,复合材料的电性能参数逐渐接近陶瓷相。  相似文献   

10.
采用传统固相反应制备无铅反铁电陶瓷材料[(Bi1/2Na1/2)0.94Ba0.06](1-x)ZrxTiO3(x=0,0.03,0.06,0.09),研究材料的相结构、介电特性及储能性能。结果表明:此陶瓷的极化强度Ps、介电常数εr,随着Zr含量的增加而减小,能量储存性能也随之改变。P-E电滞回线显示,当x=0.03时,此材料的储能性能最好。  相似文献   

11.
王永锋  吕振林 《铸造技术》2014,(7):1390-1393
采用传统固相反应法制备了无铅反铁电陶瓷[(Bi1/2Na1/2)0.94Ba0.06](1-x)ZrxTiO3(x=0,0.03,0.06,0.09),研究了材料的相结构、介电特性及储能性能。结果表明,此陶瓷的极化强度Ps、介电常数εr随着Zr含量的增加而减小,能量储存性能也随之改变。当x=0.03时,此材料的储能性能最好。  相似文献   

12.
采用热压烧结法制备Cf/TiC/Cu复合材料,研究Cf/TiC/Cu复合材料的界面反应原理及微观形貌,以及碳纤维(Cf)含量对复合材料密度、强度等性能的影响。结果表明:Cu-C-Ti三元体系在低于1100℃时,溶解在铜液中的钛原子与碳纤维接触发生反应,在碳纤维表面形成以TiC为主相的过渡层。该过渡层靠近铜液的一侧可能覆盖着一层钛铜化合物膜,TiC通过该膜层与铜紧密结合在一起,改善铜与碳纤维的界面结合,因此有利于提高Cf/TiC/Cu复合材料的性能。在钛含量不变的情况下,随碳纤维含量(质量分数)的增加,材料性能有所降低,当碳纤维含量为5%时,Cf/TiC/Cu复合材料的综合性能最好,其电阻率低达0.054μΩ·m,平行于压力方向的抗弯强度为237.90MPa,垂直于压力方向的抗弯强度为237.44MPa。  相似文献   

13.
TiC/Hastelloy复合材料是极具应用前景的中温固体氧化物燃料电池连接体材料,而抗氧化性能是影响其应用的关键性能之一。通过无压反应渗透工艺分别制备出含有50vol%和58vol%金属基体的TiC/Hastelloy复合材料。高金属含量使复合材料中的Cr含量增加,促进连续Cr2O3氧化层的形成,抑制Ni和Ti原子的外扩散,进而优化复合材料的抗氧化性能。氧化膜中Ti和Ni的氧化物含量降低,复合材料的氧化增重由2.03 mg·cm-2降低到0.55 mg·cm-2。同时,为了抑制Cr挥发,在含有58vol%金属基体的TiC/Hastelloy复合材料中引入Co。在氧化过程中,Co和金属基体中的Fe在Cr2O3氧化层中具有较快的扩散速率,可以在Cr2O3氧化层外侧原位形成CoFe2O4层。  相似文献   

14.
采用真空高温裂解聚碳硅烷法制备β-SiC陶瓷粉末,并对热解产物进行TGA/DSC、XRD和拉曼光谱表征。通过矩形波导法测量β-SiC陶瓷粉末与石蜡复合材料在8.2~18GHz下的复介电常数来研究其介电性能。结果表明:复介电常数的实部与虚部均随着热解温度的升高而增大。高温下产生的石墨碳引起的电子松弛极化及电导损耗是复介电常数的实部与虚部增大的主要原因。  相似文献   

15.
采用直接电热粉末半固态触变成形法制备Si C不同体积分数(10vol%、20vol%、30vol%、40vol%)的Si C/2024Al复合材料。利用扫描电镜观察复合材料的微观组织,通过检测其物理性能和力学性能,获得Si C体积含量和热处理对Si C/2024Al复合材料组织与性能的影响规律。结果显示:随着Si C体积含量的增大,复合材料的组织出现了程度不一的Si C颗粒团聚,使材料的致密度下降;经过T6热处理后,Si C/2024Al复合材料抗拉强度在20vol%时达到最大值(505 MPa),比完全退火态提高了68.3%;布氏硬度在40vol%达到最大值(244 HB),比完全退火态提高了41.0%。  相似文献   

16.
采用电流直加热动态热压烧结工艺制备了SiC_p/Fe复合材料,研究了5vol%SiCp/Fe、10vol%SiCp/Fe和15vol%SiC_p/Fe复合材料在25~700℃冷热循环下的热疲劳性能。结果表明:10vol%SiCp/Fe硬度最高,其抗软化能力最强。10vol%SiCp/Fe最晚产生热疲劳裂纹,其抵抗激冷激热冲击的能力优于5vol%SiCp/Fe复合材料和15%SiCp/Fe复合材料。SiC_p/Fe复合材料的界面开裂是热疲劳裂纹源萌生的主要机制。当增强粒子含量由5vol%提高至10vol%,SiC_p/Fe复合材料的热疲劳裂纹扩展速度降低。增强粒子含量为15vol%时,增强粒子团聚缺陷加速SiC_p/Fe复合材料热疲劳裂纹扩展。  相似文献   

17.
采用热压烧结方法,以氧化钇部分稳定氧化锆(Y-PSZ)粉体及不同粒径的金属Ni为原料,制备了Ni/ZrO2复合材料,研究了其力学和介电性能,探讨了烧结过程中Ni形貌的变化对复合材料介电性能的影响.结果表明,随不同粒径Ni粉的掺入,复合材料的抗弯强度减小,且较大粒径的Ni使材料抗弯强度减小更快.随Ni含量增加,复合材料断裂韧性增强.复合材料的介电常数和损耗与Ni粉含量和粒径有关.Ni含量相同时,较大粒径Ni粉的掺入使复合材料具有较高的介电常数和损耗,这是由于在烧结过程中Ni粉形貌发生变化引起的.  相似文献   

18.
颗粒增强金属基复合结构件在航空航天、机械制造以及电子电工等领域有着广泛的应有前景.文中选用激光增材选区熔化技术制备碳化钨(WC)颗粒增强TC4复合材料(WC/TC4),研究了WC颗粒含量和激光功率对复合材料微观组织和力学性能的影响.结果表明,随着WC颗粒含量的增加,复合材料宏观试样成形能力降低,在WC颗粒含量为(0%~15%)时,WC颗粒分布较为均匀,未见微气孔、裂纹的出现,当颗粒含量为20%时,材料内部出现气孔和裂纹,难以成形;在WC/基体的界面处形成了一层TiC和W2C界面层,界面结合性能良好;随着复合材料内部颗粒含量和激光功率的增加,材料的断裂强度和断后伸长率降低,断裂机理主要为WC颗粒的脆性断裂和沿WC-W2C界面的层状撕裂.  相似文献   

19.
以聚偏氟乙烯(PVDF)为基体,选用普通的铝粉为填充组分,采用一种简单的溶液共混的方法制备了两相复合厚膜材料,运用TEM、SEM 手段对复合物的微观形貌进行了表征,并研究了不同添加量的铝粉对复合材料的介电性能(介电常数、介电损耗和电导率)的影响.结果表明:铝粉的加入不仅提高了材料的介电常数,而且还具有很低的介电损耗,材料并未出现明显的渗流效应.  相似文献   

20.
采用熔融-淬冷法制备铌酸锶钡基微晶玻璃材料,研究晶化温度对铌酸锶钡微晶玻璃的显微组织、介电性能、击穿强度和储能密度的影响。微晶玻璃的晶化机理为一维界面晶体生长。结果表明:随着晶化温度的增加,材料的击穿强度明显增加。经900°C热处理得到的微晶玻璃具有最优的性能:击穿强度为1300 kV/cm,储能密度为2.8 J/cm3,其有望用于高储能密度电介质材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号