首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
采用半固态金属-增强相混合工艺制备SiC颗粒体积分数为10%的SiC_P/7085铝基复合材料,研究微米SiC颗粒在机械搅拌、超声搅拌和复合搅拌等工况下在7085铝基体中的分布规律以及不同制备工艺对SiC_P/7085复合材料拉伸性能的影响规律。结果表明:机械搅拌能够改善颗粒分布的均匀性,但同时会增加气孔缺陷;超声搅拌能有效减少复合材料中的气孔数量;采用复合搅拌工艺(30min机械搅拌+30 min超声搅拌)制备的SiC_P/7085复合材料颗粒分布均匀、气孔显著减少,抗拉强度较基体合金有较大提高,其中SiC颗粒尺寸为80、30μm的复合材料的最大抗拉强度较基体分别提高了57%和67%。  相似文献   

2.
SiCp/6061Al复合材料搅拌铸造工艺的优化   总被引:2,自引:1,他引:1  
采用组织分析的方法,研究了搅拌工艺在液态机械搅拌铸造法制备SiCp/6061Al复合材料中对SiC颗粒分布均匀性及铸造缺陷的影响,并运用正交实验法对工艺参数进行了优化。结果表明:在温度760℃,搅拌速度1200r/min,搅拌时间25min的工艺条件下,可得到SiC颗粒分布均匀、铸造缺陷较少的铝基复合材料。  相似文献   

3.
SiCP增强泡沫铝基复合材料的制备工艺研究   总被引:5,自引:1,他引:4  
将SiC颗粒增强铝基复合材料的制备技术与泡沫铝熔体发泡技术相结合,探索了制备SiC颗粒增强泡沫铝基复合材料的工艺方法。讨论了SiC颗粒与铝基体之间存在的润湿性,界面反应以及SiC颗粒在熔体中沉降等问题,通过选择合适的合金成分,对SiC颗粒进行预处理,采用特定的搅拌和发泡等一系列工艺方案成功地予以解决。在熔体发泡过程中,通过严格控制发泡温度、搅拌速度和搅拌时间等工艺参数,制得了孔隙率基本可调,SiC颗粒和孔洞分布均匀的泡沫铝样品。  相似文献   

4.
采用搅拌铸造方法制备颗粒尺寸为20~50 μm的SiCp/6061铝基复合材料,研究了SiC颗粒尺寸对6061铝基复合材料显微组织、拉伸力学性能和耐磨性能的影响.结果表明:通过搅拌铸造方法制备6061铝基复合材料,SiC颗粒在6061铝基复合材料中分布较为均匀,且随SiC颗粒尺寸增大,6061铝基复合材料中SiC颗粒的分布均匀性提高.SiC颗粒尺寸越小,6061铝基复合材料的抗拉强度和伸长率越高.在SiC颗粒尺寸为20μm时,6061铝基复合材料的抗拉强度和伸长率分别为296MPa、5.5%.随SiC颗粒尺寸增大,6061铝基复合材料的耐磨性能提高,磨损率逐渐下降.  相似文献   

5.
利用搅拌铸造?热挤压工艺制备SiCp/2024铝基复合材料板材,研究该复合材料铸态、热挤压态和热处理态的显微组织及力学性能。结果表明:SiC颗粒较均匀地分布于铸锭中,大部分SiC颗粒沿晶界分布,少数颗粒分布于晶内,晶界粗大的第二相呈非连续状分布;复合材料经热挤压变形后,显微孔洞等铸造缺陷明显消除,破碎的晶界第二相及SiC颗粒沿热挤压方向呈流线分布,复合材料的强度和塑性显著提高;对热挤压板材进行(495℃,1h)固溶处理+(177℃,8h)时效处理后,其抗拉强度达430MPa,此时的主要析出强化相为S′(Al2CuMg);热挤压变形有利于改善SiC颗粒与基体合金的界面结合,热处理SiCp/2024铝基复合材料的主要断裂方式为基体合金的延性断裂、SiC颗粒断裂和SiC/Al的界面脱粘。  相似文献   

6.
采用不同的半固态搅拌工艺(变化搅拌速度和搅拌时间),制备了SiC颗粒增强A356复合材料。利用金相显微镜(OM)、扫描电镜(SEM)和磨损试验机研究了搅拌工艺参数对复合材料中SiC颗粒的分布、孔隙率以及磨损量的影响。结果表明,在搅拌速度550 r/min、搅拌时间30 min下,制备的SiCp/A356复合材料SiC颗粒分布均匀,孔隙率相对较低,耐磨性好。  相似文献   

7.
利用搅拌铸造技术制备SiCp/A356铝基复合材料.通过金相观察(OM),扫描电镜(SEM)及力学性能测试对所制备的颗粒增强铝基复合材料的显微组织和力学性能进行了研究.结果表明,SiC增强颗粒较均匀地分布于基体中,SiC/Al界面处存在明显的Si溶质偏聚,复合材料的孔隙率为4.2%;与基体合金相比,SiC颗粒的加入提高了复合材料的硬度和屈服强度,抗拉强度及延伸率略有下降;断口分析表明,搅拌铸造SiCp/A356铝基复合材料主要的断裂机制为SiC/Al界面脱粘及基体合金的脆性断裂.  相似文献   

8.
《焊接》2016,(8)
从增强相在铝基体中的分布均匀性、铝基体晶粒形状尺寸变化、添加颗粒对复合材料综合力学性能的影响等方面出发,详细介绍了目前搅拌摩擦加工技术在制备碳化硅(SiC)、氧化铝(Al_2O_3)和碳纳米管等颗粒增强铝基复合材料研究中取得的阶段性成果;总结了采用搅拌摩擦加工技术制备颗粒增强铝基复合材料工艺过程中亟待解决的共性问题,包括:颗粒含量的提高,颗粒添加方式的改进、增强相颗粒种类的扩展等。  相似文献   

9.
采用半固态搅拌工艺制备了Mg的质量分数分别为1%、2%和3%的SiC颗粒增强A356合金基复合材料。采用光学显微镜、扫描电镜以及硬度计等研究了镁含量对复合材料中SiC颗粒的分布、孔隙率以及硬度的影响。试验结果表明:以550 r/min的搅拌速度搅拌30min制备的含2%Mg的A356合金基复合材料,其SiC颗粒分布较均匀,孔隙率降低到了2. 4%,硬度提高至102. 10 HB,具有较好的耐磨性能。  相似文献   

10.
工艺因素对SiCp/AZ91复合材料颗粒均匀性的影响   总被引:3,自引:0,他引:3  
用半固态搅拌法成功制备出了颗粒分布均匀、孔隙率低的SiCp/AZ91颗粒增强镁基复合材料,研究了搅拌速度、颗粒尺寸、搅拌叶轮旋向、颗粒预处理工艺等因素对SiCp/AZ91复合材料中颗粒分布均匀性的影响。研究发现,颗粒预处理对分布均匀性有显著影响,经过高温预氧化处理的SiC颗粒与镁合金基体润湿性很好,在半固态搅拌制备中能有效改善颗粒与基体的界面结合和颗粒分布均匀性。在其他工艺因素一定时,颗粒粒径越大,分布越均匀;搅拌速度越低,颗粒分布越不均匀。当颗粒较小时(<50μm),搅拌叶轮的旋向对分布均匀性有重要影响。确定优选工艺参数为:上旋桨、半固态等温温度为585℃、搅拌速度为400r/min、颗粒尺寸为50μm、颗粒的体积分数为15%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号