首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用Gleeble热压缩实验,构建了690合金的挤压工艺的再结晶图,探讨了完全动态再结晶的临界挤压工艺,将合金的热变形组织演变模型带入deform-2D有限元软件,并针对挤压中合金的组织演变过程对有限元软件进行了二次开发,进而模拟计算了挤压比、坯料温度以及挤压速率对690合金挤压管组织的影响规律,依据挤压机设备能力以及组织要求提出了挤压工艺的控制方法,并进一步根据有限元计算结果进行实际挤压验证。结果表明:挤压管的晶粒尺寸随着挤压比的增大呈现出先降低后增加的趋势;690合金挤压管的晶粒尺寸随坯料温度和挤压速度的降低而减小;当坯料温度在1200℃,挤压比为15.3,挤压速率200 mm/s时,挤压管的晶粒尺寸可以控制在62.7 μm以下;模拟计算结果与挤压管的相对误差仅为4.5%。  相似文献   

2.
Cu-0.23Be-0.84Co合金热变形行为   总被引:1,自引:0,他引:1  
《塑性工程学报》2015,(2):105-110
为实现Cu-Be-Co合金连续挤压的数值模拟和制定合理的热成形工艺参数,采用Gleeble-1500D热模拟机对Cu-Be-Co合金在变形温度为450℃~850℃和应变速率为0.1s-1~10s-1条件下的热变形行为进行研究;分析热压缩对合金组织的影响;根据Arrhenius方程对实验数据进行分析,建立Cu-Be-Co合金热变形本构方程。结果表明,Cu-Be-Co合金热变形的流变应力随应变速率的降低和变形温度的升高而减小,并且Cu-Be-Co合金在高温变形条件下发生动态再结晶。  相似文献   

3.
利用Gleeble3500热模拟机对3003/4004层合板铝合金进行了热压缩模拟实验,研究了在变形温度分别为300℃,350℃,400℃和450℃ 以及应变速率分别为0.05s-1、0.5s-1、5s-1、25s-1时的变形条件下3003/4004层合板铝合金的热变形行为。合金的热压缩曲线显示在开始阶段由于加工硬化效应应力应变曲线迅速上升,随后由于合金的软化,应力应变曲线进入平稳状态。根据实验结果可以看出合金的峰值应力随着应变速率的升高而升高,随着温度的升高而降低,最后根据实验结果求得了描述应变速率、变形温度以及流变应力三者之间关系的本构方程。  相似文献   

4.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了变形条件对GH690合金高温变形动态再结晶的影响。结果表明:GH690合金动态再结晶过程是一个受变形温度和应变速率控制的过程,在应变速率为0.001~1s-1的实验条件下,GH690合金获得完全动态再结晶组织所需的温度随变形速率的增大而升高;动态再结晶晶粒尺寸随变形温度升高而增大。采用力学方法直接从流变曲线确定了GH690合金发生动态再结晶的临界应变量,并回归出临界应变量与Z参数的关系式:εc=1.135×10-3Z0.14233。GH690合金的主要动态再结晶机制是原始晶界凸起形核的不连续动态再结晶机制(DDRX),而新晶粒通过亚晶逐渐转动而形成的连续动态再结晶机制(CDRX)则起辅助作用。  相似文献   

5.
通过热模拟压缩实验研究了GH2907合金在变形温度为950~1100℃、应变速率为0.01~10s-1、变形量为60%条件下的热变形行为,流变应力随着变形温度的升高或应变速率的降低而显著降低;根据Arrhenius方程和Zener-Hollomon参数,计算了热变形激活能Q,建立了GH2907合金的热变形本构方程;根据动态材料模型,确定了GH2907合金在不同应变下的功率耗散图,功率耗散效率η较高的区域位于温度为1050~1100℃,应变速率为0.01~0.03s-1范围,在该变形区域内组织发生了明显的动态再结晶现象;基于Preased失稳判据,绘制了GH2907合金在不同应变下的热加工图,流变失稳区位于高温高应变速率区域,即温度为970~1100℃,应变速率为0.6~10s-1范围,在该变形区域内动态再结晶晶粒沿着绝热剪切带和局部流动分布。根据GH2907合金热加工图及微观组织分析得到适宜的加工区域是温度为1050~1100℃,应变速率为0.01~0.03s-1范围。  相似文献   

6.
采用Gleeble-3800热压缩实验机研究了新型Ni-Cr-Co基合金在1050~1250 ℃、0.001~1 s-1条件下的热变形行为,并利用EBSD探讨了变形温度和应变速率对合金组织演变和动态再结晶形核机制的影响。结果表明,流变应力随变形温度的升高而降低,而随应变速率的增大而增加。基于流变应力曲线,建立合金的Arrhenius本构方程和热加工图,得到热变形激活能为520.03 kJ/mol,最佳热加工区间为1175~1250 ℃、0.006~1 s-1,该区域最大功率耗散效率为45%。动态再结晶分数随变形温度的升高和应变速率的降低而增加,且动态再结晶过程形成均匀细小的等轴晶粒以及∑3孪晶界。动态再结晶形核主要以晶界“弓出”为特征的不连续动态再结晶机制主导。低温高应变速率下,持续亚晶转动诱导的连续动态再结晶作为辅助形核机制发挥作用。  相似文献   

7.
利用Gleeble 1500+热模拟试验机研究了镍基690合金在800~1300℃温度范围内,应变速率在0.1~10 s~(-1)范围内热压缩过程中合金的热变形行为。结果表明,690合金在热压缩过程中产生的流变应力受变形温度和应变速率两个参数的显著影响,其对应的峰值应力随变形温度的降低和应变速率的增加而增大。利用数据拟合计算得到热变形激活能等参数,建立了用于表征峰值应力和变形温度、应变速率之间相互关系的690合金热变形本构方程。基于动态材料模型绘制了690合金的热加工图,结合该合金在不同变形温度-应变速率区域的高温变形特征以及显微组织形貌,获得了两个适合690合金热加工的变形温度-应变速率区域。  相似文献   

8.
在变形温度350~500℃、应变速率0.001~5 s~(-1)的条件下采用Gleeble-1500D热压缩模拟试验机对挤压铸造Al-17.5Si-4Cu-0.5Mg合金进行热压缩试验。研究了该合金在热变形条件下的流变应力行为,并建立该合金热变形时的本构方程。结果表明:合金流变应力随应变速率的增加和变形温度的降低而上升;在相同的变形条件下,挤压铸造合金比重力铸造合金流变应力水平更高。建立了挤压铸造合金的热加工图,得出挤压铸造合金更适合在高温低速下变形。  相似文献   

9.
Mg-Gd-Y-Mn耐热镁合金的压缩变形行为研究   总被引:2,自引:4,他引:2  
采用Gleeble-1500热模拟机对Mg-Gd-Y-Mn稀土镁合金在温度为300~500℃、应变速率为0.001~1.0s-1、最大变形程度为60%的条件下,进行恒应变速率高温压缩模拟实验研究.分析了实验合金高温变形时流变应力与应变速率及变形温度之间的关系以及组织变化,计算了表观激活能及相应的应力指数,为选择这种合金的热变形加工条件提供了实验依据.结果表明:合金的稳态流变应力随应变速率的增大而增大,在恒应变速率条件下,合金的真应力水平随温度的升高而降低;在给定的变形条件下,计算得出的表观激活能和应力指数分别为200kJ·mol-1和5.1.根据实验分析,合金的热加工宜在400~500℃温度范围内进行.  相似文献   

10.
采用Gleeble-3500热模拟机对GH690-RE合金进行高温压缩变形试验,在温度为950~1200℃,应变速率为0.001~2.000s-1的变形条件下测定并分析其应力-应变曲线。结果表明,流变应力随变形温度的升高和应变速率的降低而降低,且流变应力特征可用经典的双曲正弦模型描述。以应力-应变曲线为基础,采用线性回归法确定了GH690-RE合金的常数,建立了GH690-RE合金的高温本构关系方程。  相似文献   

11.
采用热挤压工艺制备了新型高温IN690合金。采用Gleeble-3500热模拟试验机对IN690合金进行了等轴压缩试验,研究了不同温度、应变速率和变形量对IN690合金动态再结晶(DRX)的影响。采用金相显微镜和电子背散射衍射(EBSD)对IN690合金热变形前后的金相组织、晶粒取向、晶界分布和晶粒取向差进行了系统分析。试验得到的真应力-真应变曲线表明,随着温度的降低或应变速率的增加,IN690合金的流动应力增大。IN690合金变形过程中的软化机制主要是动态回复(DRV)和DRX;随着真应变的增加或应变速率的降低,大角度晶界所占比例增加,这是由于在大的真应变或低应变速率下的DRX形核所致。  相似文献   

12.
基于DEFORM 2D的纯铜管热挤压过程的数值模拟   总被引:2,自引:0,他引:2  
通过二维建模软件建立管材立式挤压模型,采用DEFORM2D大型有限元数值模拟软件进行纯铜管热挤压过程的数值模拟,获得了不同挤压速度下变形材料内部的温度场、应力场、应变场及应变速率场的变化规律。分析结果表明,随着挤压速度的提高,变形材料内部的温升和等效应变速率明显提高;等效应力是先提高,而在高速挤压时又下降;等效应变则无明显变化。  相似文献   

13.
690合金高温变形行为与动态再结晶模型   总被引:1,自引:0,他引:1  
利用物理模拟实验方法对690合金进行恒温恒速压缩实验,变形温度范围为1050~1250℃,应变速率分别为0.1,1、5,10s-1,获得了合金的流变应力数据,并对合金变形后的组织特征进行了分析。建立了690合金高温热变形的本构方程和动态再结晶模型。结果表明:690合金高温变形时的流变行为可用Zener-Hollomon参数的双曲正弦函数来描述,所建立流变应力本构模型的预测值与实验值吻合较好,建立了690合金的动态再结晶模型,为热挤压过程中的组织控制提供理论依据。  相似文献   

14.
在温度为400℃~450℃、应变速率为0.01s-1~50s-1变形条件下,研究了AZ80镁合金的塑性变形行为,讨论了变形温度及应变速率对该合金热变形行为的影响,分析了该合金管材等温挤压的有限元模拟。研究发现,AZ80镁合金晶粒大小随温度的升高而增大,随应变速率的升高而减小;在高温变形时,发生连续动态再结晶,再结晶组织相对较均匀;通过调整挤压速度2mm/s~1mm/s,使该合金挤压出口温度维持在400℃~430℃较小范围内波动,从而保证制品的组织性能和尺寸精度的稳定。  相似文献   

15.
A study on the deformation rate response of an important Al-Si-Cu-Mg alloy prepared from rapidly solidified powder is undertaken, through hot extrusion and tensile tests which cover a wide variation of strain rate. The individual effects of ram speed in extrusion and crosshead speed in tensile tests on the flow behavior of the material are analyzed. It is derived that the pressure requirement for extrusion is a combined function of ram speed (or strain rate) and temperature rise. The balance of the two factors gives an increase in extrusion pressure with rising ram speed—a result being different from that found in the extrusion of some other aluminum alloys. The tensile results obtained from the extruded material, using constant and incremental strain rate methods, prove that the flow stress of the alloy under study is more sensitive to strain rate than that of other aluminum alloys. Finally, a direct comparison between the two deformation processes is made in terms of the flow stress dependence of strain rate.  相似文献   

16.
IN690合金在热加工过程中,存在一些复杂的冶金现象(包括:加工硬化(WH)、动态回复(DRV)和动态再结晶(DRX)等),为了揭示这些现象,通过热压缩试验创建了IN690合金的高温本构方程和DRX模型,分析了IN690合金的DRX机制。此外还利用有限元模拟(Deform-3D)软件对IN690合金的DRX过程进行模拟。结果显示,在一定的应变下,IN690合金的动态再结晶体积分数(XDRX)随变形温度的上升或应变速率的降低而增大。  相似文献   

17.
Experiments and numerical simulations were conducted to analyze the continuous extrusion of AA6063 aluminum alloy under extrusion wheel angular velocities of 0.52, 0.78, 1.04 and 1.3 rad/s. Simulation results indicate that variations in extrusion wheel velocity directly affect material deformation and significantly influence the maximum extrusion temperature. This work also reveals that deformation and temperature have opposing effects on the microstructure of the resulting product. A greater wheel velocity causes a higher strain rate and extrusion temperature. Increasing the wheel velocity, at an initially low speed, causes a large increase in strain rate. This results in a decrease in grain size. In contrast, at high wheel velocities, further increases to wheel velocity have much less effect on the strain rate, leading to an increase in grain size as the increased extrusion temperature dominates the mechanics of grain growth. Tensile test results demonstrate that the tensile strength of the resulting aluminum extrusions mainly depends on the exit temperature, which is decided by the deformation speed. Tensile strength and hardness slightly increase with increased deformation speed. Extremely high extrusion temperature results in brittle failure and low mechanical properties of the resulting product when the extrusion speed reaches 1.3 rad/s. This paper suggests that an optimum extrusion wheel velocity, which will generate products with good mechanical properties, exists.  相似文献   

18.
模具结构对AZ91镁合金挤压成形性能的影响   总被引:1,自引:1,他引:0  
AZ91镁合金由于强度高、流动性好等特点,通常用作铸造合金。研究该合金合理的挤压温度、挤压速度及模具结构,对提高其塑性成形性能、开发高强度变形镁合金有重要的理论和实际意义。文章通过热模拟试验研究了AZ91镁合金应力应变关系,确定了最佳变形温度。在此基础上,采用三维有限元法模拟分析了不同挤压速度、模具结构对挤压过程温度场、速度场及应力场的影响。结果表明,采用锥模和流线模时,当定径带长度为15mm~20mm时,可在挤压速度达到5mm/s的条件下成形出表面光滑无裂纹的镁合金棒材;而采用平模挤压时,当定径带长度为10mm~20mm时,获得良好表面质量的挤压速度达到2.5mm/s。在650t的卧式挤压机上,进行了该合金的挤压实验,实验结果与模拟结果相吻合。  相似文献   

19.
利用电子万能试验机和分离式Hopkinson压杆得到Ti_2AlNb合金准静态拉伸曲线及高应变率下动态压缩应力-应变曲线,观察分析变形后试样的微观组织,研究其高应变率下的流动应力特征。结果表明:在应变率2500~7500 s-1范围内,Ti_2AlNb合金的流动应力对应变率有较强的敏感性,且具有应变强化、应变率增强及增塑效应;应变率为5500、6500、7500s-1的3组试样中观察到了与加载方向约成45°的绝热剪切带。改进Johnson-Cook本构模型,拟合实验数据得到Ti_2AlNb合金室温下的动态塑性本构关系,与实验对比,改进后的模型能够较好地描述Ti_2AlNb合金在高应变率下的流动应力。  相似文献   

20.
变形态Mg-Nd合金的组织转变和拉伸性能特征   总被引:4,自引:0,他引:4  
研究不同变形条件对Mg-2.2Nd-0.5Zn-0.5Zr合金室温拉伸性能和组织的影响.经过不同条件的热挤压变形后,该合金的强度和延性都有不同程度的增加,屈强比从0.58提高到0.87左右.固定变形温度时,强度随变形速率增大而降低,延性反之.固定变形速率时,升高变形温度则强度降低,延性增加.弥散于晶界的Mg9Nd化合物细化了晶粒.变形态Mg-Nd合金的高温超塑拉伸研究发现,375℃是该合金的最佳超塑变形温度,应变速率在1×10-2s-1时,延伸率达到329%;当变形速率提高到2×10-2s-1时,该合金的延伸率仍可达到213%.分析不同真应变下的组织发现,在变形初期发生动态再结晶,晶粒得到破碎而变得细小,随着变形程度的增加,晶粒长大程度较小.在变形后的断口形貌中发现,Mg-Nd合金的超塑变形机制为晶界滑移控制下的孔洞连接协调机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号