首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在研究2A50及SiCp/2A50复合材料力学性能的基础上,采用失重方法和电化学方法研究了2A50及SiCp/2A50复合材料在NaCl溶液中腐蚀行为和腐蚀机理,研究了不同尺寸、不同含量的增强颗粒SiCp对复合材料力学性能和腐蚀行为影响的变化规律。研究结果表明:当增强颗粒SiCp尺寸一定时,随着增强颗粒含量的增加,复合材料的强度增加,延伸率降低,而复合材料的腐蚀速率增加;当增强颗粒SiCp含量一定时,随着增强颗粒尺寸的增加,复合材料的强度降低,而延伸率则降幅较小,复合材料的腐蚀速率增加;复合材料中增强颗粒SiCp含量的变化并没有影响材料的腐蚀电位的变化,且与基体合金的腐蚀电位变化幅度较小;合金中的第二相与增强颗粒SiCp在复试过程中作为腐蚀阴极相,共同增加了合金的腐蚀速率;增强颗粒SiCp的加入降低了合金的耐蚀性能,且所研究的5种复合材料的腐蚀速率均大于基体合金的腐蚀速率。  相似文献   

2.
利用搅拌铸造技术制备SiCp/A356铝基复合材料.通过金相观察(OM),扫描电镜(SEM)及力学性能测试对所制备的颗粒增强铝基复合材料的显微组织和力学性能进行了研究.结果表明,SiC增强颗粒较均匀地分布于基体中,SiC/Al界面处存在明显的Si溶质偏聚,复合材料的孔隙率为4.2%;与基体合金相比,SiC颗粒的加入提高了复合材料的硬度和屈服强度,抗拉强度及延伸率略有下降;断口分析表明,搅拌铸造SiCp/A356铝基复合材料主要的断裂机制为SiC/Al界面脱粘及基体合金的脆性断裂.  相似文献   

3.
本研究通过搅拌铸造法制备了三种不同体积分数(2%,5%, 10%)的SiCp/Mg–5Al–2Ca复合材料,并在673 K下进行了热挤压。铸态复合材料中,少量SiCp颗粒的加入就能破坏了Al2Ca相沿基体合金晶界分布并有效细化Al2Ca相析出尺寸。随着SiCp体积分数的增高,Al2Ca相尺寸有所降低,但不明显。经过热挤压后,Al2Ca相破碎并沿挤压方向排布,基体合金晶粒得到细化。晶粒尺寸以及Al2Ca相尺寸随着SiCp体积分数的增高呈微小降低。与单组元基体合金相比较,挤压态SiCp/Mg–5Al–2Ca复合材料的屈服强度和加工硬化率随着SiCp体积分数的增高而逐渐增高,而延伸率则逐渐下降;抗拉强度最大值则出现在SiCp体积分数为5%时。复合材料中SiCp颗粒以及Al2Ca相的脱粘以及开裂是导致复合材料断裂的主要原因。  相似文献   

4.
为了研究微米级碳化硅颗粒(SiCp)尺寸对中体积分数SiCp增强铝基复合材料的拉伸性能与强化机制的影响,用粉末冶金工艺制备体积分数为30%的SiCp/2024Al复合材料,利用OM,SEM,万能材料试验机等对材料微观结构和拉伸性能进行了研究。结果表明,复合材料的拉伸强度随着SiCp尺寸的减小而增大。当SiCp尺寸为3μm时,复合材料的断裂主要以界面处的基体合金撕裂为主;当SiCp尺寸为25μm和40μm时,复合材料的断裂以SiCp解理断裂为主;当SiCp尺寸为8μm和15μm时,复合材料的断裂方式是以界面处的基体合金撕裂和SiCp的断裂共同作用。3μm SiCp增强复合材料相对密度不高、SiCp分布不均匀但其拉伸强度最大,主要原因为受力时小SiCp极少断裂和小颗粒效应导致基体的显微组织强化。  相似文献   

5.
SiC_p尺寸及基体强度对铝基复合材料破坏机制的影响   总被引:4,自引:0,他引:4  
对粉末冶金法制备的尺寸分别为3.5,10,20μm的Sicp增强Al-Cu基复合材料的拉伸断口及EDX成分分析表明,增强相尺寸大于10μm时,复合材料的破坏归因于SiCp解理形成的裂纹;增强相尺寸为3.5μm时,复合材料的破坏则归因为SiC-Al界面撕裂形成空洞和裂纹.拉伸试验表明,小尺寸SiCp增强的复合材料具有高的拉伸强度及延伸率.低强度复合材料由于基体强度降低,塑性增加,破坏过程主要表现在拉伸载荷下SiCp附近铝基体的空洞形核、长大和聚合.  相似文献   

6.
采用粉末冶金方法制备了生物可降解的纯镁基体和不同百分含量的羟基磷灰石颗粒增强镁基复合材料。通过压缩试验和电化学测试对复合材料的机械性能和耐腐蚀性能进行了研究。结果表明,复合材料的压缩屈服强度明显高于纯镁基体,并且随着羟基磷灰石含量的增加而提高;电化学测试结果表明,复合材料在生物模拟体液中的腐蚀电位与纯镁基体相比明显提高,其中Mg-20%HA复合材料的腐蚀电位为-1.582 V,腐蚀电流密度为10.84μA/cm2。  相似文献   

7.
以SiC泡沫陶瓷和SiC颗粒(7、15、20 μm)为混合增强体,用挤压铸造法制备出SiC泡沫陶瓷/SiCp混杂增强Al基复合材料,研究了SiCp颗粒尺寸对复合材料压缩强度和弯曲性能的影响,以及金属基体的韧性对复合材料压缩行为的影响.结果表明,随着SiC颗粒尺寸的增大,复合材料的压缩强度和弯曲强度降低,最大挠度减小,这是因为随着SiC颗粒尺寸的增大,颗粒间距随之增大,SiC颗粒的强度降低,使SiC颗粒的增强效果减弱.随着基体韧性的提高,复合材料的塑性变形明显增大,但压缩强度和模量降低.  相似文献   

8.
采用球磨工艺将碳化硅颗粒与TC11钛合金粉末混合,通过放电等离子体烧结工艺制备了碳化硅颗粒增强钛基复合材料(SiCp/TC11),并研究了复合材料的微观结构和力学性能。结果表明,SiCp/TC11复合材料内部无孔洞,烧结致密。碳化硅颗粒与钛基体发生反应,生成碳化钛颗粒。随着碳化硅颗粒含量的增加,SiCp/TC11复合材料的晶粒尺寸逐渐减小,维氏硬度升高。添加0.5%(质量分数)的碳化硅颗粒后,SiCp/TC11复合材料的室温屈服强度和抗拉强度分别提高了31.3%和14.1%,500℃高温抗拉强度提高了6.9%。SiCp/TC11复合材料强度的提高主要归因于晶粒细化、固溶强化以及载荷传递。  相似文献   

9.
SiCP/Al-Si复合材料颗粒偏析问题及力学性能   总被引:1,自引:0,他引:1  
采用扫描电镜对基体中Si含量和冷却速度对SiCp/Al-Si复合材料颗粒偏析问题及Si含量和冷却速度对复合材料力学性能的影响进行了研究.结果表明,当基体分别为Al-7Si、Al-12Si和Al-21Si合金时,随着基体中Si含量的增加,SiC颗粒偏析得到明显改善,但当基体中Si含量大于12%时,随着Si含量的增加,SiC颗粒偏析改善的程度不明显.当基体为Al-7Si合金时,采用砂型时,SiC颗粒被排斥到共晶体内,形成颗粒偏析;采用石疆型时,由于冷却速度快,SiC颗粒没有充分的时间做长距离的移动,SiC颗粒分布均匀.随着基体中Si含量的增加,3种基体复合材料的力学性能逐渐降低.增大冷却速度可以明显提高材料的力学性能.  相似文献   

10.
采用真空热压烧结在不同工艺参数下制备SiC颗粒体积分数分别为10%,20%,30%,40%的SiCp/ZL101A复合材料,研究烧结温度、保温时间等工艺参数对SiCp/ZL101A复合材料显微组织的影响以及SiC含量对SiC颗粒在基体ZL101A中分布均匀性的影响,同时对SiCp/ZL101A复合材料界面进行透射电镜显微分析。结果显示,随着烧结温度的增加,组织致密度增加,气孔数量及尺寸减小;保温时间的增加导致复合材料平均晶粒尺寸的增加;随着SiC颗粒体积分数的增加,SiC颗粒在基体ZL101A中分布均匀性变差;固相烧结法制备的SiCp/ZL101A复合材料中没有出现界面反应现象。  相似文献   

11.
SiCp尺寸对铝基复合材料拉伸性能和断裂机制的影响   总被引:25,自引:0,他引:25  
肖伯律  毕敬  赵明久  马宗义 《金属学报》2002,38(9):1006-1008
对粉末冶金法制备的不同尺寸SiCp增强铝基复合材料的拉伸性能进行了研究.结果表明,小尺寸SiCp(<7μm)复合材料断裂以界面处基体撕裂为主,强度较高.大尺寸 SiCp增强复合材料断裂以 SiCp解理为主,强度较低,但塑性比小尺寸颗粒增强复合材料要高.体积分数为17%,尺寸为7μm颗粒复合材料拉伸性能最好.  相似文献   

12.
本文采用半固态搅拌技术制备出了5μm10vol%Grp/AZ91、(5μm5vol%Grp+5μm5vol%SiCp)/AZ91和 (5μm5vol%Grp+10μm5vol%SiCp)/AZ91共3种镁基复合材料,并对其在300℃,0.05mm/s的条件下进行了热挤压,研究了SiCp对挤压态复合材料的显微组织、力学性能和耐磨性能的影响规律。研究结果表明,与Grp/AZ91相比,SiCp的引入导致基体晶粒尺寸增大,引起石墨颗粒碎化;随着SiCp尺寸增加,晶粒尺寸增大,石墨碎化现象更为显著。SiCp的加入提高了Grp/AZ91复合材料的抗拉强度、延伸率和硬度,随着SiCp尺寸增加,力学性能进一步提升。SiCp的引入降低了Grp/AZ91复合材料的磨损率,同时摩擦系数上升,随着SiCp尺寸增加,磨损率进一步下降,摩擦系数进一步上升,磨损机制由剥层磨损转变为磨粒磨损。  相似文献   

13.
利用复合铸造和振动斜板铸造2种方法铸造SiCp增强A356复合材料,比较2种复合材料中碳化硅含量对材料显微组织、孔隙、硬度和耐磨性的影响。在铸态条件下,振动斜板铸造和复合铸造的2种复合材料的基体分别为球形和枝晶结构。振动斜板铸造的复合材料其碳化硅颗粒分布更加均匀,并且具有更高的硬度,复合铸造的材料则具有更少的孔隙。对于这2种复合材料,碳化硅颗粒的增加(体积分数最大为20%)导致碳化硅颗粒在基体合金内更加均匀分布并且提高了其耐磨性。与复合铸造材料相比,对于振动斜板铸造的复合材料,碳化硅含量的增加,将降低球形颗粒的尺寸和形状因子,并且具有较好的耐磨性。振动斜板铸造材料比复合铸造材料具有更好的力学性能,这是因为基体中的碳化硅颗粒分布更加均匀,而且振动斜板铸造过程中形成了球形组织。  相似文献   

14.
用粉末冶金法制备了SiCp/Al-Cu-Mg基复合材料,研究了SiC颗粒体积分数、Mg在基体合金中的含量(质量分数)以及热处理工艺对SiCp/Al-Cu-Mg复合材料的力学性能的影响.结果表明,热处理工艺、SiC颗粒的加入和在基体合会中的Mg含量,都能明显提高复合材料的硬度和强度.9v01%SiC/Al-4wt%Cu-1.2wt%Mg复合材料的力学性能最好,其硬度和强度由热处理前的101.3 HV0.02和285 MPa提高到热处理后的151.5 HV0.02和372 MPa.  相似文献   

15.
采用熔体搅拌技术制备了SiCp尺寸分别为20μm、20μm+50μm、50μm的10SiCp/6061复合材料,并在100MPa压力下挤压铸造成形,研究了颗粒尺寸对挤压铸造复合材料微观组织和力学性能的影响。结果表明,随着颗粒尺寸增加,10SiCp/6061复合材料的孔隙率不断降低,颗粒分布更加均匀,力学性能均逐渐降低,复合材料断裂模式由韧性断裂向韧脆混合断裂模式转变。  相似文献   

16.
采用动电位阳极极化法对17%SiCp/2024Al基复合材料及其基体合金在3.5%NaCl水溶液中的耐蚀性进行了研究.结果表明:SiC颗粒的加入并不影响SiCp/2024Al基复合材料的点蚀敏感性,但与基体相比,其耐蚀性有所下降.对极化后和长期浸泡试样的腐蚀形貌观察发现:与基体相比,SiCp/2024Al基复合材料表面上的蚀孔数量相对较多,蚀孔尺寸稍小,大小分布不均匀;最大蚀孔较深,并有严重的裂缝腐蚀;裂缝腐蚀的存在会使SiCp/2024Al基复合材料的点蚀抗力明显降低.能谱分析表明:SiCp/2024Al基复合材料的腐蚀机制为富Cu阴极相与贫Cu阳极相间的电偶腐蚀,另外,SiC与Al间也存在电偶腐蚀倾向.  相似文献   

17.
用自制的同轴圆筒旋转流变仪对SiCp/A356颗粒增强复合材料浆料的流变特性进行研究.结果表明,SiCp/A356复合材料在液态和半固态条件下,表现出非牛顿流体的特性,浆料稳态表观粘度随着剪切速率的增大而下降.当剪切速率达到一定值时,其剪切变稀特性减弱,显示出牛顿流体的特性.在连续冷却条件下,半固态浆料的表观粘度随着温度的降低而先缓慢后迅速增大.在总固相率相同时,SiCp/A356复合材料的表观粘度比A356合金低,加入的SiCp,体积含量越多,浆料流变性能越好.同时,在加入相同体积分数的SiC颗粒条件下,增强颗粒尺寸越小,浆料表观粘度越大.  相似文献   

18.
以Fe_(50-x/2)Al_(50-x/2)Cr_x(x=4,8,12,16)体系粉末为基体,掺杂1%(质量分数)的钨精矿粉末,压制成坯。利用激光引燃自蔓延烧结制备原位自生颗粒增强复合材料。采用OLYMPUS4000、XRD等微观组织结构表征手段及合金硬度、磨损性能等宏观力学性能及腐蚀性能测试方法,研究不同Cr粉含量对烧结合金组织及性能的影响。结果表明:烧结合金物相主要为Fe_3Al,Al_2O_3,AlCrFe_2,Cr_2O_3及硬质颗粒相W。当Cr含量为8%时,烧结合金内部针状组织细小致密,物相有较好的分散性;磨损率相对较低,为0.38 mg/mm~2。当Cr含量为12%时,烧结合金硬度最高,为11 450 MPa;自腐蚀电位最大,为327.643 mV;腐蚀电流密度最小,为1.044 m A·cm~(-2),腐蚀速率最低。  相似文献   

19.
采用压力浸渗制备了体积分数为51.5%的SiCp/Mg-6Al-0.5Mn镁基复合材料.通过力学性能测试与组织观察,研究了高体积分数SiC颗粒增强体对基体合金的显微组织与力学性能的影响.结果显示,在Mg-6Al-0.5Mn基体合金中加入体积分数为51.5%的SiC颗粒后,复合材料的压缩性能得到了大幅度的提高,室温下的抗压缩强度从329.5 MPa增大到624.8 MPa.SiCp/Mg-6Al-0.5Mn复合材料的组织致密,分布均匀,其断裂方式包括界面脱开、基体韧断和增强体开裂.SiC颗粒与基体之间发生了界面反应,生成了纳米级的Mg2Si化合物.  相似文献   

20.
研究了高比例大尺寸SiCp/Al复合材料于不同颗粒尺寸、基体、预处理类型及热循环次数情况下在热循环过程中的累积残余应变(εcr)。结果表明:(1)复合材料相对基体具有更小的εcr,并随着增强颗粒尺寸变大,其εcr逐渐变小;(2)通过选择合适的基体及加入适当量合金元素可以获得具有较低εcr的高比例颗粒增强铝基复合材料;(3)适当的预处理可以显著降低材料的εcr,从而提高其尺寸稳定性;(4)随着热循环次数的增加,复合材料的εcr趋于平稳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号