首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用次亚磷酸钠化学还原法制备非晶态Ni-P合金粉末,并研究了镍离子浓度、pH值和温度对反应的影响。用X射线衍射仪(XRD)、扫描电镜(SEM)、震动样品磁强计(VSM)和X射线能谱仪(EDS)对样品进行了表征。结果表明,初始pH值为12,在70℃加入还原剂再升温到90℃,然后控制镍离子的浓度可制备出球形度高和分散性好的非晶态合金粉末,其磁性显示出超顺磁性。  相似文献   

2.
金刚石化学镀镍的研究   总被引:5,自引:3,他引:2  
黄世玲  张迎九  杨德林 《表面技术》2015,44(6):65-69,81
目的增强金刚石与基体的结合强度。方法采用"除油—粗化—敏化活化—解胶"的方法对金刚石进行预处理,通过化学镀镍方法对金刚石进行表面改性,结合扫描电子显微镜及X射线能谱仪研究不同参数对化学镀镍层的影响。结果在粒度为10μm左右的金刚石表面镀覆致密镍层的最佳工艺参数为:Ni SO4·6H2O(主盐)25 g/L,次亚磷酸钠30 g/L,乳酸15 g/L,乙酸钠15 g/L,稳定剂20 mg/L,光亮剂1 g/L,p H=5.5,温度85℃。结论次亚磷酸钠含量、硫脲含量、p H值、温度对镀覆时间、金刚石增重比及镀层形貌有影响,以最佳工艺参数获得的金刚石镍镀层包覆完整均匀,质量较好。  相似文献   

3.
为研究电解液浓度对微弧氧化的影响规律,在磷酸钠电解液中采用恒压模式对5083铝合金进行微弧氧化,采用场发射扫描电镜、划痕仪以及电化学工作站等研究了电解质浓度对膜层生长速率、组织成分、膜基结合强度以及耐腐蚀性能的影响。结果表明:随着磷酸钠浓度的增大,氧化膜厚度线性增加,膜层表面的"火山堆积"状形貌特征愈发明显,但浓度过大时氧化膜出现局部不均匀堆积及较大孔洞,其对氧化膜成分影响不明显;氧化膜与基体结合良好,且随着浓度增加结合强度出现先增后减的趋势。当磷酸钠浓度为10 g/L时,氧化膜的自腐蚀电流最低,为2.96×10~(–8) A/cm~2,比铝合金基体降低了1个数量级,表现出良好的耐腐蚀性能。  相似文献   

4.
采用氧化增重法、X射线衍射、扫描电子显微镜研究了不同溶解氧浓度下700℃级超超临界锅炉用GH2984镍基合金的750℃饱和蒸汽氧化行为,结果表明: GH2984合金在不同溶解氧浓度(10ppb、5ppm)的水蒸气中生成的氧化层均为单层结构,主要由连续Cr2O3和少量弥散或局部聚集分布着Al2O3、TiO2内氧化产物组成。加氧处理会造成GH2984合金氧化膜厚度增加和内氧化现象明显,并使得表面零散分布的Fe2O3瘤状凸起消失,转而生成更多富Cr瘤状凸起。另外,水中溶解氧浓度上升未引起GH2984合金表面Cr2O3氧化膜的加速挥发,但降低了氧化膜中的TiO2含量。  相似文献   

5.
目的 研究复合还原剂次亚磷酸钠(SHP)和硫酸羟胺(HAS)对置换镀金过程的影响,拟解决化学镀Ni-P层上置换镀金的镍腐蚀和后期沉金困难的问题。方法 采用连续加热测试,研究了还原剂对镀液稳定性的影响。利用密度泛函理论对配合物分子进行了计算,对比了反应前后配合物分子结构的福井函数和轨道能级。通过XRF测试了金层的厚度,并结合开路电位分析了还原剂对镀层厚度的影响。利用恒电位下电流瞬变对金核生成和成长的影响进行了分析。通过SEM对镀层的微观形貌进行了表征;通过Tafel测试对镀层的电化学抗腐蚀性进行了分析。结果 次亚磷酸钠和硫酸羟胺同时加入不会影响镀液的稳定性,羟胺与腈根的反应降低了Au+的反应活性。0.05 mol/L次亚磷酸钠和0.03 mol/L硫酸羟胺下能够获得超过0.09 μm的镀金层。在次亚磷酸钠的作用下,镀金过程中的镍析出减少,镍层的腐蚀得到有效抑制。成核模式在硫酸羟胺的作用下处于瞬时成核,金核尺寸更大。镍腐蚀的减少以及镀金层厚度的增加,使得整个镀层的抗腐蚀性能得到显著的提高。结论 在置换镀金液中同时加入次亚磷酸钠和硫酸羟胺有效地提升了镀金速率,并且降低了镍层腐蚀,改善了化学镀镍金层的质量,有利于提高工业生产效率,并满足PCB高致密性和高频化趋势下的新要求。  相似文献   

6.
通过电化学极化曲线测试技术及扫描电子显微镜,系统地研究了磷酸盐对铝合金(LY12CZ)在3.5%NaCl溶液中的缓蚀作用。实验结果表明,磷酸钠和磷酸二氢钠在较低浓度范围内随着浓度的增大缓蚀效率随着增大,在较高浓度时,缓蚀效率不高。  相似文献   

7.
铝合金阳极氧化膜醋酸镍封闭方法耐蚀性研究   总被引:5,自引:0,他引:5  
研究了醋酸镍封闭方法对不同铝合金阳极氧化膜在NaCl溶液中电化学行为的影响,并与沸水封闭方法和重铬酸钾封闭方法作了比较。利用扫描电子显微镜(SEM)观察了封闭后阳极氧化膜的表面形貌。利用能量散射谱(EDS)分析了封闭后阳极氧化膜表面和截面成分。利用动电位极化和电化学阻抗谱(EIS)研究了封闭后阳极氧化膜的腐蚀行为。结果表明:醋酸镍封闭方法可以使铝合金阳极氧化膜具有平整均匀的表面形貌,镍元素分布于整个阳极氧化膜层中。在酸性和碱性溶液中,醋酸镍封闭的铝合金阳极氧化膜比沸水封闭和重铬酸钾封闭的铝合金阳极氧化膜具有更高的耐蚀性,是一种较好的封闭方法。  相似文献   

8.
针对以次磷酸钠为还原剂的印制线路板(PCB)化学镀铜体系,探讨了络合剂乙二胺四乙酸二钠(EDTA·2Na)和酒石酸钾钠对次磷酸钠化学镀速和镀液稳定性的影响,使用线性扫描和循环伏安法研究其电化学行为。结果表明,EDTA·2Na和酒石酸钾钠均能稳定化学镀铜液,改善镀层质量,前者降低化学镀速,后者对化学镀速先增大后降低,其适宜浓度分别为12和9.6 g/L。随着络合剂EDTA·2Na浓度增加,铜阴极还原峰电流逐渐减小,次磷酸钠阳极氧化影响不明显。随着酒石酸钾钠浓度增加,铜阴极还原峰和次磷酸钠阳极氧化峰电流均先增大后减小。  相似文献   

9.
熊林利  黎学明  王涛  徐珂 《表面技术》2020,49(1):180-186
目的探究尼龙66化学镀最佳粗化工艺,优化次亚磷酸钠化学镀铜工艺,比较在相同工艺条件下化学镀镍-铜及化学镀铜-镍工艺对织物电磁屏蔽效能的影响。方法将经过稀盐酸/乙酸水溶液以及稀盐酸/乙酸乙醇溶液粗化后的尼龙66织物化学镀镍,用扫描电镜观察镀层效果,对比两种粗化方案,用化学镀铜沉积速率及质量损失率反映化学镀镀覆效果,探索出次亚磷酸钠的最佳镀铜配方,确定次亚磷酸钠化学镀铜的最佳工艺条件。用法兰同轴测试化学镀铜、化学镀镍及经过化学镀镍后镀铜和化学镀铜后镀镍的电磁屏蔽效能。结果稀盐酸/乙酸水溶液粗化后,织物镀层易脱落;稀盐酸/乙酸乙醇溶液粗化后,镀层覆着力强。以次亚磷酸钠为还原剂的最佳镀铜工艺为:硫酸铜20 g/L,硫酸镍8 g/L,次亚磷酸钠70 g/L,硼酸35 g/L,p H10.2~10.6,时间20min,温度75℃。化学镀铜后化学镀镍得到的织物屏蔽效能达70d B。结论稀盐酸/乙酸乙醇溶液粗化效果最佳,比使用稀盐酸/乙酸水溶液处理的镀层更均匀致密。化学镀镍所得镀层为非晶态物质,次亚磷酸钠化学镀铜所得镀层为晶态物质。化学镀铜后镀镍织物镀层更为致密。在相同工艺条件下,化学镀铜-镍的质量增加率大于化学镀镍-铜,屏蔽效果优于化学镀铜、化学镀镍-铜。  相似文献   

10.
正0前言化学镀镍磷是不用外来电流,借氧化还原作用在金属制件的表面上沉积一层Ni-P的方法。化学镀镍磷合金按溶液的pH值可以分为酸性和碱性两种。酸性化学镀Ni-P工艺是目前应用最为广泛的化学镀镍工艺,化学镀镍工艺因为镀层均匀、亮度好、耐蚀性及耐磨性优良而被广泛应用于多个领域。酸性化学镀镍,镀液pH在4.3~5.2,采用次亚磷酸钠作为还原剂,除了镍离子被还原以外,次磷酸根本身也会被吸附氢原子还原为磷,因而形成Ni-P合金镀层。  相似文献   

11.
表面活性剂在陶瓷化学镀铜工艺中的作用   总被引:2,自引:0,他引:2  
通过研究在镀液中添加十六烷基三甲基溴化铵(CTAB)、十二烷基硫酸钠(SDS)和吐温-80三种表面活性剂对化学镀铜沉积速率和镀液稳定性的影响,确定出三种添加剂的最优添加浓度。通过扫描电镜、能谱分析仪和X射线衍射仪,对镀层表面形貌、组成成分以及晶体结构分别进行研究。并通过线性伏安扫描法,研究了添加不同表面活性剂镀液的电化学行为。结果表明:表面活性剂可以提高化学镀铜的沉积速率和镀液稳定性。CTAB、SDS和吐温-80的最优添加浓度分别为1mg/L、20mg/L和5mg/L。加入SDS后,由于沉积速率过大,使得镀层颗粒变大。加入CTAB和吐温-80可以细化镀层的颗粒且更加致密。添加不同的表面活性剂后,镀层的晶粒尺寸没有太大改变,含铜量均为100%且镀层的晶粒呈现面心立方晶体结构。表面活性剂主要通过影响甲醛的氧化反应影响化学镀铜过程。  相似文献   

12.
化学镀镍诱发过程催化活性的电化学本质   总被引:9,自引:0,他引:9  
XPS电子能谱技术的测定表明,化学镀诱发伊始,先只有镍的沉积,然后才有NiP的共沉积出现。结合铜基试样在所设计的4种溶液体系中动电位扫描伏安曲线的结果,初步显示,对化学镀镍具有催化特性的金属,从电化学本质上来说,就是一种自身能提供到达或超过镍的析出电位的金属。通过电极电位的理论计算及混合电位的测定,说明了化学镀镍首先是镍析出,然后再发生NiP共沉的机理  相似文献   

13.
次亚磷酸钠体系化学镀镍的研究进展   总被引:3,自引:0,他引:3  
王美媛  旷亚非 《腐蚀与防护》1999,20(12):533-536
分析了次亚磷酸钠体系化学镀镍机理的研究进展,并就近年来对该体系研究的新的方法进行人,以便对化学镀镍目前的研究水平和未来的发展方向有一个较全面的了解。  相似文献   

14.
We investigated electroless nickel deposition in aqueous alkaline solution with and without conventional palladium catalyzation and found that nickel deposition was initiated and sustained on silicon substrates even without the palladium nuclei activation of the surface. But the resulting quality of the nickel film was not as good as the one with the prior activation. The reason was observably directed to the initial stage of the deposition processes. Nickel deposits nucleation on silicon surface was considered crucial for subsequent achievement of a well adhered, least damage influenced film. Effects of ammonia fluoride, nickel ion concentration and bath temperature in the aqueous nickel bath without reducing agent were studied over the nucleation results. The existence of fluorine ions in the solution increased the density of nickel nuclei particles and refined nickel particle sizes to the most extent, while concentrated nickel bath enhanced the nucleation as well. Consequently the improved quality of nickel film that was obtained from the electroless baths can be attributed to the fine and dense nickel particles formed in the initial stage by virtue of the fluorine ion, concentrated nickel ion and elevated temperature.  相似文献   

15.
Al2O3陶瓷表面化学镀镍工艺及其低温连接   总被引:1,自引:1,他引:1       下载免费PDF全文
进行了Al2O3陶瓷表面的化学镀镍处理,对Al2O3陶瓷表面前处理工艺各个工序进行研究,制定了前处理流程.研究了硫酸镍浓度、次亚磷酸钠浓度、施镀温度、施镀时间等对镀层沉积速率的影响,对镀层进行了金相分析,在此基础上得到化学镀镍的优化工艺.进行了镀镍后Al2O3陶瓷低温钎焊工艺试验,研究了不同化学镀工艺条件对接头组织及力学的影响.结果表明,在试验条件下,硫酸镍、次亚磷酸钠浓度等化学镀工艺,焊接温度、焊接时间及压力等焊接工艺对接头组织及力学性能均有重要的影响.  相似文献   

16.
An alkaline hypophosphite bath (0.1?M nickel sulphate, 0.2?M sodium hypophosphite, 0.2?M sodium acetate and 0.1?M malic acid, adjusted to pH 5) was used to produce Ni–P coatings on uncoated and electroless nickel pre-plated mild steel. The deposition was monitored by open-circuit potential-time monitoring vs. a saturated calomel reference electrode and potentiostatic current–time monitoring together with anodic and cathodic polarisation. Classical mixed potential theory was applied to the polarisation data to calculate the effect of controlled iodate ion additions (0–1000?ppm) as an accelerator to the electrolyte on the plating rate. The mixed potential and deposition current density increased gradually with potassium iodate concentration. The use of electrochemical data allowed the optimum iodate additive concentration to be established using simple instrumentation.  相似文献   

17.
Ce(SO4)2对化学镀镍液及镀层性能的影响   总被引:5,自引:0,他引:5  
采用电化学方法研究了Ce(SO4)2对化学镀镍液及镀层性能的影响。结果表明:Ce(SO4)2的添加总体上提高了化学镀镍层的耐腐蚀性能和沉积速率,当加入量为2mg·L^-1时,镀层具有最高的沉积速率;当加入量为5mg·L-1时,镀层具有最好的耐蚀性能;Ce(SO4)2能够在电极表面吸附,对次亚磷酸根氧化的促进作用表现在提高了其氧化电流密度,并通过影响化学镀镍的阳极反应来影响化学镀镍层的沉积速率;Ce(SO4)2的加入增大了化学镀镍反应的活化能,提高镀液的稳定性。  相似文献   

18.
介绍了电子自旋共振技术的基本原理,以及在金属腐蚀与防护领域中的应用,如研究电镀添加剂的还原、化学镀镍的阳极氧化、阻垢与缓蚀往日发表及附行为,指出了电子自旋共振技术在这一领域研究中的优势和存在的问题。  相似文献   

19.
以次磷酸盐酸性化学沉积镍体系为对象,研究了基体对化学沉积反应具有催化活性的电化学本质。首先利用稳定电位的测量明确化学沉积镍反应中次磷酸盐氧化的决定性作用,并发现次磷酸盐的氧化反应也具有特征反应电位。基于先前研究得到的次磷酸盐阳极氧化机制,提出对化学沉积镍反应具有催化活性的金属需符合的条件是,在化学镀液中金属的电位高于次磷酸盐的氧化还原电位的同时,必须低于该金属在此特定镀液中的零电荷电位值。并选取5种具有代表性的金属进行了实验验证  相似文献   

20.
Ternary Zn–Ni–Mo alloy coatings were deposited from a citrate-sulphate bath at pH 5.7 containing different amounts of sodium molybdate. The content of molybdenum in the coatings (from 0.3 to 5.2?at.-%) can be easily controlled by increasing sodium molybdate concentration in the plating bath from 0.0025 to 0.05?mol?dm??3, which results also in deposition of smoother deposits. An increase in molybdate concentration leads to the shift of reduction potentials towards more negative values and to the decrease in current efficiency of deposition process. XRD analyses and anodic linear sweep voltammetry (ALSV) measurements demonstrated that at least two phases are formed in the Zn–Ni–Mo alloy: a hexagonal zinc phase or solid solution of nickel in zinc and Ni5Zn21 intermetallic compound. Furthermore, the XRD analyses revealed a third phase, which could be assigned to the oxidised species of molybdenum or other alloying metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号