首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
新SIMA法制备AZ91D半固态坯   总被引:10,自引:11,他引:10  
利用等径道角挤压试验、半固态等温处理试验、金相显微镜、SEM等试验方法和分析设备,对经过等径道角挤压的AZ91D镁合金在等温处理过程中的微观组织演变进行了研究。通过研究,提出了新SIMA制备AZ91D镁合金半固态坯方法。新SIMA法制备的半固态坯料的微观组织均匀,晶粒球化程度好,晶粒细小,平均晶粒尺寸在20—50μm之间。随着保温时间的延长,新SIMA法制备半固态坯料的微观组织有长大的现象,其可用Ostwald熟化理论描述。随着等温处理温度的升高,晶粒的尺寸先增加后减小,形状系数接近1。随着材料在ECAE中获得的等效应变的增加,半固态坯料的晶粒尺寸减小。  相似文献   

2.
新SIMA法制备AZ91D镁合金半固态坯   总被引:1,自引:0,他引:1  
借助于等径道角挤压试验、镦粗试验、半固态等温处理等试验方法,并利用金相显微镜、SEM等试验分析设备,对原始铸坯、镦粗和等径道角挤压3种加工状态的AZ91D镁合金在等温处理过程中的微观组织演变进行了研究.通过与原始铸坯直接等温处理和镦粗后等温处理生成的半固态坯的微观组织作比较,提出了新SIMA制备AZ91D镁合金半固态坯方法.新SIMA法制备的半固态坯料的微观组织均匀,晶粒球化程度好,晶粒细小,平均晶粒尺寸在20~50 μm之间.随着保温时间的延长,新SIMA法制备半固态坯料的微观组织有长大的现象,其可用Ostwald熟化理论描述.随着等温处理温度的升高,晶粒的尺寸先增加后减小,形状系数接近1.随着材料在ECAE中获得的等效应变的增加,半固态坯料的晶粒尺寸减小.  相似文献   

3.
等径道角挤压AZ91D镁合金的半固态组织演变   总被引:9,自引:1,他引:9  
通过半固态重熔实验,并利用金相显微镜,对等径道角挤压AZ91D镁合金的半固态组织演变进行了研究.结果表明:等径道角挤压后二次加热等温处理是一种适于AZ91D镁合金的制坯方法,加热温度对坯料的组织有很大影响.当保温时间一定时,随着加热温度的升高,先是球化效果越来越好,后来发生晶粒合并长大现象,晶粒尺寸也会逐渐长大,当保温时间为15 min,加热温度为560℃时,二次加热组织最好;当加热温度一定时,随着保温时间的延长,晶粒尺寸有长大的趋势,当加热温度为560℃,保温时间为15 min时组织球化效果最好,晶粒最细小;当加热温度和保温时间一定时,随着挤压次数的增加,二次加热组织的晶粒尺寸减小.  相似文献   

4.
采用拉伸试验机、金相显微镜和等径道角挤压等试验方法对Mg-Al系镁合金半固态坯料制备及触变挤压过程进行了研究.结果表明,等径道角挤压工艺对Mg-Al系镁合金有很好的应变诱导效果.经过等径道角挤压的Mg-Al系镁合金力学性能高,晶粒细小.等径道角挤压+等温处理方法制备的Mg-Al系镁合金半固态坯的微观组织晶粒细小,球化程度高,微观组织非常均匀.生产的AZ61、AZ80、AZ91D和AM60镁合金角框零件的微观组织细小,抗拉强度分别达到306.8、308.3、299.8、321.6MPa.伸长率分别达到21.6%、28.4%、14.6%和29.6%.  相似文献   

5.
研究了半固态等温处理温度和时间对挤压AZ91镁合金微观组织演变的影响。挤压AZ91镁合金的微观组织为流线带状组织,由分布于其间的细小再结晶α-Mg等轴晶组成。在半固态温度区间进行等温处理时,合金内的低熔点相及溶质元素富集区优先开始熔化,然后沿着晶界渗透,形成液相包围固相晶粒的半固态组织。随着等温温度的升高,固相晶粒熔化分离的速度加快。在等温温度为560℃时,随着等温时间的延长,液相不断增加,固相晶粒分离并不断趋于圆整。等温处理20 min后,合金达到了固/液平衡状态,Ostwald熟化机制开始明显,晶粒长大成为主要机制。挤压AZ91镁合金较佳的等温处理工艺为等温温度560℃,等温时间20~30 min。  相似文献   

6.
采用正挤压—等径道角挤压复合工艺对铸坯进行等效应变为4.71的预变形,并研究该预变形坯在再结晶及半固态等温处理过程中的组织演化规律。结果表明,再结晶晶粒细小、均匀,且该组织对随后的半固态等温处理过程中的组织演化及液相分布有重要影响,当在530℃保温15~30min时,所获得的晶粒平均直径为35~40μm,晶粒的形状系数为1.31~1.1,且液相的有效体积分数达到96%以上,非常适合触变成形复杂形状零部件。该工艺能为连续制备大尺寸制件奠定理论基础。  相似文献   

7.
胡志  闫洪  聂俏 《铸造》2012,61(2):169-173
在不同等温热处理工艺条件下,对纳米SiCP/AZ61镁基复合材料的组织演变进行了研究,并采用电子显微镜、SEM和XRD技术对其进行观察与分析。结果表明:在本试验条件下,等温时间在15~30 min之间,保温温度在595~605℃区间时,制备的n-SiCP/AZ61镁基复合材料半固态颗粒等效直径为30~80μm,圆整度为1.1~1.6,是理想的半固态组织;外加颗粒的存在与颗粒尺寸的减小使得复合材料在等温热处理过程中获得近球状半固态组织所需时间显著减小,同时晶粒直径也相对减小。  相似文献   

8.
用金相显微镜观察了等通道转角挤压AZ91D镁合金在570℃等温热处理过程中的组织演变。结果表明,等通道转角挤压后半固态等温热处理是一种适于制备AZ91D镁合金半固态浆料的方法。该材料的微观组织在此过程中经历了四个阶段:初期的快速粗化阶段、组织分离阶段、晶粒球状化阶段和最后的粗化阶段。当挤压4道次后,加热时间为15 min时,组织球化效果最好,晶粒最细小;而后随着加热时间的延长,晶粒尺寸和形状系数逐渐增大;当加热时间一定时,随着挤压道次的增加,组织的晶粒尺寸和形状系数减小。  相似文献   

9.
采用半固态等温热处理法研究了预变形SiCP/AZ61复合材料的微观组织变化.研究表明,SiCP/AZ61复合材料经15%预变形后,其最佳非枝晶组织的制备工艺参数:加热温度600℃、保温30~60min,这一温度区间可获得均匀、圆整的球状组织;当加热温度高于605℃时,复合材料试样液相体积分数较高,产生严重变形和流淌,难以满足后续半固态触变成形时的组织要求.变形后SiCP/AZ61复合材料组织演化机制分析表明,在加热初期,晶粒主要呈熔合合并;加热中后期,晶粒主要通过熔化分离、球化并粗化长大.  相似文献   

10.
采用自孕育法制备AZ61变形镁合金半固态浆料,研究了熔体处理温度对制备AZ61变形镁合金半固态浆料的影响。结果表明,自孕育铸造法制备AZ61半固态浆料在液相线以下凝固成形,可以获得近球状的初生相。适宜的熔体处理温度为700℃,对应的平均晶粒尺寸为39.8μm。熔体处理温度过低时,组织中的树枝晶减少的同时细小的近球状晶增多,但是其晶粒尺寸大小分布不均匀。熔体处理温度过高时,组织中树枝晶增多,晶粒平均尺寸显著变大。  相似文献   

11.
SiC颗粒、保温时间对SiC_P/AZ61复合材料半固态组织的影响   总被引:1,自引:0,他引:1  
研究SiC颗粒、保温时间对SiCP/AZ61复合材料半固态组织的影响,并探讨复合材料等温过程中半固态组织演变机理。结果表明,SiCP/AZ61复合材料在温度595℃,不同保温时间(0min~90min)下,其组织的演变过程为,枝晶臂合并→大块状组织→晶界处局部熔化分离→晶粒组织球化→球状组织缓慢长大。在温度595℃,保温30min~60min时,SiCP/AZ61复合材料可以获得最佳的半固态组织;与AZ61基体合金相比,由于SiC颗粒的加入,使得SiCP/AZ61复合材料在等温热处理过程中的半固态组织更为细小,并且随着SiC颗粒体积分数增加,其半固态组织中球状颗粒的尺寸越小。  相似文献   

12.
通过等温挤压和金相观察,研究了AZ31和AZ91镁合金不同变形条件下的挤压性能和变形后的微观组织变化。结果表明,AZ31镁合金的挤压变形性能较好,而AZ91镁合金在挤压比为4∶1、挤压温度为400℃,以及在挤压比为9∶1、挤压温度为350℃和400℃时,挤压后的试件表面均出现了裂纹;AZ31镁合金的最佳成形温度为300℃~400℃,AZ91镁合金的最佳成形温度为300℃~350℃;镁合金在热挤压过程中发生了动态再结晶,挤压之后合金的晶粒显著细化。  相似文献   

13.
14.
Preparation of semi-solid billet of magnesium alloy and thixoforming was investigated by applying equal channel angularextrusion to magnesium alloy.The results show that mechanical properties of AZ91D alloy at room temperature,such as yieldstrength(YS),ultimate tensile strength(UTS)and elongation,are enhanced greatly by four-pass equal channel angularextrusion(ECAE)at 573 K and microstructure of AZ91D alloy is refined to the average grain size of 20μm.Through using ECAE asstrain induced step in SIMA and completing melt activated step by semi-solid isothermal treatment,semi-solid billet with finespheroidal grains of 25μm can be prepared successfully.Compared with common SIMA,thixoformed satellite angle framecomponents using semi-solid billet prepared by new SIMA have higher mechanical properties at room temperature and hightemperature of 373 K.  相似文献   

15.
研究了铸态AZ91D镁合金在等径角挤压(Equal Channel Angular Extrusion,ECAE)后的室温力学性能和微观组织特征。在力学性能方面,铸态AZ91D镁合金经过1道次ECAE变形后,室温力学性能(屈服强度、抗拉强度、延伸率、弹性模量)由86.3 MPa,146.3 MPa,1.84%,42.5 GPa分别提高到144.1MPa,222.8 MPa,3.49%,47.7 GPa;2道次后变为109.1 MPa,268.3 MPa,4.48%,48.9 GPa。在微观组织方面,挤压1道次后,由于枝状晶粒在等径道弯角处滑动和转动时发生破碎,AZ91D镁合金的晶粒和黑色共晶相Mg17Al12沿挤压方向拉长为条带状;挤压2道次后,黑色共晶相开始部分回溶,共晶相有所减少且呈非连续分布。  相似文献   

16.
1 Introduction AZ91D magnesium alloy has received more attention due to its high specific strength, specific rigidity and good dimensional stability and so on[1]. Thixoforming is one of the best methods with regard to forming AZ91D magnesium alloy compone…  相似文献   

17.
段兴旺  李鹏  李凯 《金属热处理》2021,46(10):39-44
采用应变诱发熔化激活法(SIMA)工艺制备了AZ80A镁合金半固态坯料,研究了保温温度和保温时间对半固态组织的影响。结果表明:随着保温温度的升高和保温时间的增加,AZ80A镁合金的平均晶粒尺寸与液相率都呈上升趋势,形状因子呈先增大后减小的趋势。半固态组织由α-Mg晶粒、Al、Zn元素富集形成的晶界处液相和晶内“小液池”组成,其组织演变分为初始晶粒合并长大,晶粒球化、彼此分离,最终合并粗化3个阶段。采用该种方法制备AZ80A镁合金半固态坯料时合适的保温温度为550 ℃、保温时间为45 min,此时半固态组织的平均晶粒尺寸、形状因子和液相率分别为89 μm、0.795和26.7%。  相似文献   

18.
1Introduction Thixoforming is one of the best methods regarding manufacture of Mg-Al-Zn alloy components because of its low resistance of deformation compared with solid metal forging and high mechanical properties of formed components compared with liqui…  相似文献   

19.
The microstructural evolution of AZ91D magnesium alloy processed by equal channel angular pressing during isothermal heat treatment at 570℃ was investigated. The results indicated that the equal channel angular pressing followed by semi-solid isothermal heat treatment was an effective method to prepare semisolid nondendritic slurry of AZ91D magnesium alloy. During this process, its microstructure change underwent four stages, the initial coarsening stage, the structure separation stage, the spheroidization stage and the final coarsening stage. The microstructural spheroidization effect was the best after being heated for 15 min for the alloy pressed for four passes, and the grain size was the smallest. With the further increase of heating time, the grain size and shape factor increased. When the heating time was kept constant, the grain size and shape factor decreased with the increase of pressing passes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号