首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
针对核装备零部件维修再制造的需要,采用激光熔覆技术制备高强韧马氏体不锈钢熔覆层,以改善核装备零部件的表面性能,随后对熔覆层试样分别进行300 ℃和500 ℃保温2 h的回火处理。采用OM、SEM、显微硬度计、万能拉伸试验机等设备测试了试样的组织和性能。结果表明,原始试样的抗拉强度为1719 MPa,断后伸长率在15%左右,硬度为550 HV0.2,耐磨性较差;当回火温度为300 ℃时,出现逆转变奥氏体,硬度降至500 HV0.2,抗拉强度降为1662 MPa,断后伸长率超过15%,耐磨性提高;当回火温度上升到500 ℃时,逆转变奥氏体减少,碳化物逐渐析出,出现二次硬化,硬度又上升至530 HV0.2,抗拉强度降至1582 MPa,断后伸长率降至14%左右,耐磨性与原始试样相当。该高强马氏体不锈钢熔覆层整体耐腐蚀性均优于1Cr13钢,具有良好的耐腐蚀能力。  相似文献   

2.
激光增材制造H13钢及回火处理的组织和性能   总被引:1,自引:0,他引:1       下载免费PDF全文
利用激光增材制造技术成功制备了H13钢,并研究了回火处理对其显微组织和性能的影响。通过光学显微镜、SEM以及XRD衍射仪对各试样进行分析。结果表明,激光增材制造H13钢显微组织主要为马氏体、残余奥氏体以及细小碳化物,回火处理使得马氏体向回火马氏体转变,同时有细小合金碳化物析出。当回火温度超过550℃时,碳化物开始粗化。随回火温度升高,显微硬度呈先升后降的趋势。550℃回火后,试样硬度达到峰值600 HV_(0.3)。摩擦磨损测试结果表明,不同处理状态下各试样主要以粘着磨损为主,同时包含轻微氧化磨损。与沉积态试样相比,550℃回火后,试样耐磨性提高了2倍;650℃回火2 h后,由于基体软化,试样的耐磨性能最差。拉伸测试表明,当回火温度低于550℃时,断口主要以解理断裂为主,550℃回火时抗拉强度最大,为1 928.2 MPa,延伸率为6.4%;当回火温度升高到600~650℃时,断口呈现出韧性断裂,抗拉强度降低,延伸率增大。  相似文献   

3.
蠕墨铸铁激光合金化熔覆的界面组织及性能   总被引:1,自引:0,他引:1  
针对铸铁激光熔覆涂层结合界面淬火硬化、裂纹倾向大的问题,提出激光合金化与激光熔覆相结合的工艺在蠕墨铸铁表面制备NiCoCrAlY合金涂层。通过光学显微镜、扫描电子显微镜、X射线衍射仪、维氏硬度计研究了激光合金化熔覆中熔覆层稀释率、组织、显微硬度的演化规律,通过三点弯曲试验考察了熔覆层的结合特性及力学性能。结果表明:激光合金化熔覆工艺方法将热影响区由马氏体组织转变为回火索氏体组织,降低了淬硬层深度,改善了熔覆层结合特性与塑性,抗弯强度提高到891MPa。断口显示,熔覆层与基体结合良好,断裂机制是脆性解理断裂与韧窝断裂混合机制。  相似文献   

4.
激光熔覆修复航空发动机风扇机匣TC4钛合金静子叶片   总被引:6,自引:2,他引:4  
结合航空发动机大型风扇机匣TC4钛合金静子叶片的修复需求,研究了损伤叶片的激光熔覆修复工艺,对熔覆层成分、组织、显微硬度及力学性能进行了分析。试验结果表明,激光熔覆层TC4钛合金的O、N、H元素成分满足标准要求;激光熔覆区为具有魏氏体组织特征的柱状晶,柱状晶内部为细密的马氏体组织,热影响区为柱状晶和双态组织的混合组织,并逐渐过渡到基体的双态组织;激光熔覆层显微硬度平均比母材高15%,过渡平缓;激光熔覆TC4试样的室温拉伸、400 ℃高温拉伸、热暴露试验的强度结果均高于母材试样,断后延伸率稍低。采用单道多层熔覆工艺对受损叶片进行修复,验收合格后,风扇机匣得到使用。  相似文献   

5.
通过在Fe-C-Si-B粉末体系中添加强碳化物形成元素Ti的方法,激光熔覆制备了原位合成颗粒增强铁基复合涂层.用扫描电子显微镜和透射电子显微镜对其微观组织进行了研究,重点分析了激光熔覆过程中马氏体的形成和亚结构的转变.结果表明,熔覆层无气孔和裂纹、组织均匀,是一种典型的亚共晶组织,由马氏体、莱氏体、残留奥氏体和原位生成的TiC颗粒组成.涂层中的马氏体是{211},<113>系片状孪晶马氏体,二次回火效应使得马氏体中析出了大量的具有纳米尺度的渗碳体,与马氏体具有一定的取向关系.  相似文献   

6.
采用光纤激光焊接高强钢DP980,并对温度场分布进行有限元计算。结果表明,焊缝中心热循环温度高达3204℃,迅速冷却后形成马氏体组织,硬度较母材提高30%,抗拉强度达到了1115.7 MPa,延伸率相对母材下降49.1%。回火区应力应变曲线存在明显的屈服平台,抗拉强度(850.7 MPa)明显低于母材(986.9 MPa)。焊接接头抗拉强度为母材的87.1%,延伸率为母材的32.7%。焊接接头拉伸试样和杯突试样均断于回火区。焊接接头的杯突值较母材下降32.58%,母材主应变值高于焊接接头。  相似文献   

7.
目的通过诱发纳米孪晶强化贝氏体化涂层强度及耐磨性。方法在250℃对中碳合金钢进行激光熔覆,并进行等温处理。通过残余应力测试、X射线衍射试验、扫描电子显微镜和透射电子显微镜观察、显微硬度和纳米压痕测试、往复磨损试验及磨损形貌表征,分别评价激光熔覆涂层的残余应力、物相、显微组织与结构、硬度梯度及微观硬度\耐磨性能。结果激光熔覆涂层平行和垂直激光移动方向的平均应力值分别为(209±20)MPa和(319±21)MPa。激光熔覆引入大量位错结构,使残余奥氏体尺寸降低至(37.5±2.5)nm。两组试样均为无碳化物贝氏体组织,其显微组织由针状的贝氏体铁素体以及残余奥氏体组成。在激光热作用及后续等温过程中,显微组织明显细化,并伴随生成大量塑性良好的纳米孪晶结构。激光熔覆涂层的平均显微硬度为650HV,较基体的平均硬度提升了约25%。相同磨损时间下,熔覆层的磨损体积为0.675 mm3,基体的磨损体积为1.142 mm3,纳米孪晶结构的形成大大提升了中碳合金钢的抗粘着磨损性能。结论在特定温度对中碳合金钢进行激光熔覆可以制备贝氏体化涂层,在热应力作用下,显微组织中形成的纳米孪晶结构能够对涂层增强增韧,同时提高其抗粘着磨损性能。  相似文献   

8.
采用高功率CO2激光熔覆铁基合金粉末,获得了无裂纹、稀释率低、成形良好的熔覆涂层。利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)对熔覆层的显微组织进行了观察与分析,通过硬度测试与拉伸试验考察了涂层的力学性能。结果显示:熔覆层为纳米贝氏体与残余奥氏体的复合组织,均匀分布的贝氏体铁素体板条厚度为50~80 nm,贝氏体板条间为厚度10~30 nm更为细小的残余奥氏体薄膜;熔覆层平均硬度为610 HV,熔覆涂层的抗拉强度为1 280 MPa,延伸率为6.41%,拉伸断口形貌为韧窝断口。  相似文献   

9.
目的 对比研究常规与超高速激光熔覆涂层的微观组织、相结构,明确涂层结构及性能间的构效关系。方法 以27SiMn为基体,分别采用常规和超高速激光熔覆技术制备Fe基涂层。采用扫描电镜(SEM)表征涂层的显微组织,用能谱仪(EDS)分析涂层的元素分布。采用X射线衍射仪(XRD)、光学显微镜(OM)和电子背散射衍射(EBSD)方法分析涂层的相组成。采用显微硬度计、电化学工作站等测试涂层的硬度分布及电化学特性。结果 常规与超高速激光熔覆涂层组织致密,均无明显气孔和裂纹等缺陷。相较于常规激光熔覆涂层,超高速激光熔覆涂层的晶粒更为细小,涂层成分接近粉末设计成分,晶内和晶间Cr元素分布更为均匀。2种工艺制备的涂层均由马氏体、铁素体和M型碳化物组成,但是超高速激光熔覆涂层所含马氏体和碳化物含量更低,使其硬度低于常规激光熔覆涂层。同时,与常规激光熔覆涂层相比,超高速激光熔覆涂层的自腐蚀电位由–0.56 V升高至–0.51 V,自腐蚀电流密度由1.3×10–5 A/cm2显著降低至1.5× 10–7 A/cm2。 结论 与常规激光熔覆相比,超高速激光熔覆涂层晶粒细小,成分均匀,具有更优异的耐腐蚀性能。与此同时,涂层的马氏体及碳化物含量更少,硬度更低。  相似文献   

10.
采用光纤激光焊接高强钢DP980,并对温度场分布进行有限元计算。结果表明焊缝中心热循环温度高达3204 ℃,迅速冷却后形成马氏体组织,硬度较母材提高30%,抗拉强度达到了1115.7 MPa,延伸率相对母材下降49.1%。回火区应力应变曲线存在明显的屈服平台,抗拉强度(850.7 MPa)明显低于母材(986.9 MPa)。焊接接头抗拉强度为母材的87.1%,延伸率为母材的32.7%。焊接接头拉伸试样和杯突试样均断于回火区。焊接接头的杯突值较母材下降32.58%,母材主应变值高于焊接接头。  相似文献   

11.
针对海洋钻井平台齿轮的修复问题,采用冷金属过渡(CMT)技术在40CrNiMo调质钢表面进行堆焊,利用扫描电镜、显微硬度测试、冲击性能测试和拉伸性能测试等手段,研究了焊后回火温度对40CrNiMo调质钢堆焊热影响区(HAZ)组织和性能的影响。结果表明:随着焊后回火温度的升高,焊接热影响区的硬度逐渐下降,堆焊试样的抗拉强度逐渐下降,伸长率逐渐提高。焊后回火温度为400 ℃和500 ℃时,析出的碳化物在马氏体的条界、束界和晶界上分布,恶化了堆焊试样的冲击性能;焊后回火温度为600 ℃时,碳化物聚集长大和球化,并愈发弥散分布,从而改善了冲击性能。  相似文献   

12.

Direct laser deposition (DLD), as a popular metal additive manufacturing process, shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component. However, during the processing of DLD, the deposited steel layer is affected by the subsequent layer depositing. The DLD block shows different microstructure and mechanical properties at the bottom, middle and top of the deposited parts. To date, there are few research works about the effects of inter-layer interval time and laser power on the microstructure evolution and mechanical properties of the deposited layers. In this study, the idle time and laser power layer by layer during DLD of 12CrNi2 steel were controlled to cause the deposited layers to maintain a high cooling rate, while the bottom deposited layer was subjected to a weak tempering effect. Results show that a high proportion of martensite is produced, which improves the strength of the deposited layer. Under the laser scanning strategy of laser power 2,500 W, scanning velocity 5 mm·s−1, powder feeding rate 11 g·min−1, overlap rate 50%, and a laser power difference of 50 W and a 2 min interval, the tensile strength of the deposited layer of 12CrNi2 steel is in the range of 873–1,022 MPa, and the elongation is in the range of 16.2%–18.9%. This study provides a method to reduce the tempering effect of the subsequent deposition layers on the bottom layers, which can increase the proportion of martensite in the low-alloy high-strength steel, so as to improve the yield strength of the alloy steel.

  相似文献   

13.
The aim of this study was to compare the influence of intercritical quenching (IQ), step quenching (SQ) and quenching plus tempering (QT) heat treatments on the microstructure and tensile properties of 1.7Ni–1.5Cu–0.5Mo–0.2C pre-alloyed powder metallurgy (P/M) steels. In the microstructures of the IQ and SQ specimens partial martensite having Ni-rich phases formed up in the soft ferritic matrix. It was observed that unlike Mo, a Cu alloying element dissolved homogeneously in the specimens. The martensite volume fraction (MVF) in the SQ specimens was higher than that in the IQ specimens. It was found that macrohardness, yield and tensile strengths increased, whereas microhardness of ferrite and elongation decreased with increasing MVF. However, with this increase, microhardness values of martensite phases decreased in the IQ specimen, while they increased in SQ specimens. It was observed that the yield, tensile, and elongation values of the QT specimens were lower than those of all intercritically annealed specimens having the same hardness values.  相似文献   

14.
热处理工艺对300M超高强度钢组织和性能的影响   总被引:1,自引:0,他引:1  
采用SEM、TEM等方法研究了不同回火温度对300M超高强度钢的显微组织和力学性能的影响。结果表明,300M钢经870℃淬火后,在290~320℃范围内回火,显微组织为板条马氏体、下贝氏体和残留奥氏体组成。随着回火温度的升高,板条马氏体宽度由260 nm增加到437 nm,位错密度减小,下贝氏体含量增多;合金的抗拉强度有所下降,韧性呈上升趋势,而屈服强度、伸长率和断面收缩率变化较小。当回火温度为300℃时,强度、塑性和韧性达到一个最佳匹配,合金具有最优的综合力学性能。  相似文献   

15.
采用激光增材制造技术制备了Ferrium M54钢,研究了传统热处理对其组织和力学性能的影响。利用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪(XRD)、拉伸试验机及维氏硬度计分析了沉积态和热处理后试验钢的微观组织和力学性能。结果表明,激光增材制造M54二次硬化钢是由沿沉积方向生长的柱状晶构成,沉积态试样纵向的抗拉强度和屈服强度分别为1832 MPa和997 MPa,断后伸长率和断面收缩率分别为9.5%和28%;经过传统热处理后,定向凝固形成的胞状结构消失,得到马氏体组织。经1075 ℃固溶+1060 ℃油淬+-73 ℃深冷+510 ℃时效处理后激光增材制造 Ferrium M54钢的性能最好,抗拉强度为1863 MPa,屈服强度为1594 MPa,断后伸长率为15%,断面收缩率为59%,硬度为603 HV。  相似文献   

16.
采用高温激光共聚焦显微镜(HT-CLSM)原位动态观察的方法,通过对动态视场下马氏体浮凸和贝氏体浮凸的鉴别,研究了含铜钢奥氏体连续冷却过程中的组织转变规律和相变点测定方法。结果表明,冷却速度由5 ℃/s升至20 ℃/s,试样的组织逐渐由贝氏体变为板条马氏体。HT-CLSM动态观察过程中,贝氏体形成速度慢,生长过程中伴有“互锁”现象,产生的浮凸较浅;随着冷速的升高,产生的马氏体浮凸有爆发性和阶段性趋势,多为成束状平行分布,且马氏体浮凸较深。当冷却速率为20 ℃/s时,动态观察下以成束马氏体形成为判据,测得Ms点为447.6 ℃,室温下组织为板条马氏体,显微硬度达到301 HV10,与其他方法测定结果相近。  相似文献   

17.
袁睿  潘中德  武会宾 《金属热处理》2021,46(10):112-116
利用扫描电镜、激光共聚焦显微镜、室温拉伸、低温冲击测试等试验方法,采用了正火、强化正火、正火+400 ℃回火的热处理工艺,研究了不同正火工艺对420 MPa级海洋风电用钢板组织和性能的影响。结果表明:通过正火处理后,正火态试验钢的平均晶粒尺寸由轧态试验钢的8 μm细化至6 μm,带状组织得到改善,强度与低温冲击性能均得到提升,屈服强度提升至442 MPa,-50 ℃下的冲击吸收能达到120 J;通过正火+400 ℃回火处理后,平均晶粒尺寸为7 μm,虽然大幅度提升了钢的低温冲击性能,-50 ℃下的冲击吸收能量达到194 J,但是钢的屈服强度降低为422 MPa。强化正火后组织为铁素体+珠光体+少量贝氏体,平均晶粒尺寸为5.6 μm,屈服强度提升至460 MPa,断后伸长率和低温冲击吸收能量相较于正火后试验钢有所降低但仍能满足EN10025性能标准,达到强韧性的最佳匹配,是生产420 MPa级海上风电用钢的最佳热处理工艺。  相似文献   

18.
唐彩  陈波  范汇吉 《金属热处理》2020,45(2):134-137
基于光学显微镜(OM)对不同回火工艺参数下的ZG30Mn铸钢显微组织进行观察分析,同时进行拉伸性能、布氏硬度与冲击性能等力学性能检测。结果表明,经不同回火温度与回火时间处理后,ZG30Mn铸钢显微组织均以不同形态的回火索氏体为主。在相同的保温时间(90 min)下,随着回火温度(580、600、620、640 ℃)的升高,ZG30Mn铸钢的强度与硬度均不断减小,断后伸长率和冲击吸收能量均呈不断增大的趋势。在相同的回火温度(620 ℃)下,随着回火时间(30、60、90、120 min)的增加,ZG30Mn铸钢的强度与硬度均不断减小,但断后伸长率和冲击吸收能量呈现先增后减的变化趋势。回火温度对马氏体向索氏体转变过程起关键作用,温度的升高将影响α-Fe相回复和再结晶的效率,弥散的细小渗碳体逐渐长大并球化,导致强度与硬度降低,断后伸长率和冲击吸收能量增加。而回火保温时间将决定渗碳体的长大程度,随回火时间的增加,渗碳体的聚集长大导致断后伸长率和冲击吸收能量降低。  相似文献   

19.
采用光学显微镜、扫描电镜、电子万能试验机、数显显微硬度计,研究了一步法淬火配分(Q&P)工艺和热轧一步法淬火配分(HR-Q&P)工艺在不同配分温度下处理后Q235钢的组织和力学性能。结果表明:HR-Q&P工艺使试验钢晶粒明显细化,显微组织由马氏体、铁素体和贝氏体组成,在350 ℃配分下,屈服强度和抗拉强度都达到最大值,分别为449 MPa和560 MPa,伸长率与原样相比下降了8%,但仍然超过30%;硬相的马氏体和贝氏体的同时出现,导致断口出现二次裂纹;一步法Q&P工艺下,与未处理试验钢相比,抗拉强度提高约32%,屈服强度提高近1倍,伸长率保持在26%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号