首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大型金属零件广泛应用于航空航天、能源、国防等领域中的关键承力结构,多采用铸造或者锻造工艺成形制造。电弧熔丝增材及其复合制造技术是近二十年来迅速发展起来的一种快速近净成形制造技术,具有高效低成本的显著优势,是大型金属零件成形制造中热点研究方向。本文总结概述了近年来大型金属零件电弧熔丝增材制造工艺的应用与研究,指出了金属材料电弧熔丝增材制造中广泛存在的控形控性难题,介绍了多种结合传统塑性成形工艺的电弧熔丝增材复合制造技术及其控形控性方法,最后对大型金属零件电弧熔丝增材及其复合制造技术的发展进行了总结与展望。  相似文献   

2.
国内外电子束熔丝沉积增材制造技术发展现状   总被引:14,自引:6,他引:8  
随着增材制造技术的不断发展,各种增材制造技术,如电弧增材制造、激光增材制造和电子束增材制造等,在其相应的领域内展开了广泛的研究.文中总结了电子束熔丝沉积增材制造技术的特点.重点介绍了国内外对电子束熔丝沉积技术开展的研究工作,简要介绍了国内外学者在电子束熔丝沉积技术设备和工艺方面取得的最新研究成果.分析了电子束熔丝沉积技术目前亟需展开的研究工作,并展望了该技术应向活泼难熔金属、复合材料、梯度材料制备与大型复杂构件的增材制造等方向发展.  相似文献   

3.
电弧增材制造因其成形效率高、适用材料范围大、设备简单、工件尺寸不受限制等特点,在航空航天领域大型金属构件制备方面具有独特优势。对航空航天领域涉及的电弧熔丝增材制造(Wire and Arc Additive Manufacturing,WAAM)典型材料的微观组织及力学性能进行了总结分析,从增材过程工艺控制、增材后热处理以及复合增材技术三个方面综述了电弧熔丝增材工艺质量控制的方法,并概述了近年来大型金属构件电弧熔丝增材制造的应用情况,最后对大型金属零件电弧熔丝增材制造技术的发展方向进行了展望。  相似文献   

4.
电弧熔丝增材制造是一种高效快速近净成形制造技术,凭借其低成本、高柔性的显著优势成为中/大型金属零件制造的热点研究方向及首选方案。概述了近年来电弧熔丝增材制造技术在成形轨迹及工艺规划方面的研究进展,总结了三维模型切片方法、具有不同几何特征的二轮轮廓路径规划方法、典型结构的特殊路径规划策略及成形工艺参数优化与控制策略,介绍了多方面提高表面质量与成形精度的工艺方法及悬垂结构、倾斜结构的无支撑打印策略,最后总结了电弧熔丝增材制造技术当前研究进展,指出了未来提升电弧增材制造装备及工艺控制的智能化水平的研究方向。  相似文献   

5.
电弧熔丝增材制造(WAAM)已成为装备制造领域的重要发展方向之一,通过电弧加热熔化金属丝材,可在预设路径上逐层叠加堆积完成三维实体金属构件的增材制造成形,具有效率高且成本低的优点,尤其适合大尺寸铝合金构件的一体化增材制造成形。但由于铝合金固有的冶金行为特征,电弧熔丝增材制造中易出现冶金缺陷,如气孔、裂纹等问题,较大程度限制了产品力学性能的进一步提升,也严重制约了铝合金电弧熔丝增材制造技术的高效高质量发展。本文主要综述了电弧熔丝增材制造铝合金的气孔、裂纹等冶金缺陷问题,总结了缺陷形成机理、影响因素和抑制措施等方面的研究进展,并对铝合金电弧熔丝增材制造技术的未来发展方向进行了展望。  相似文献   

6.
热处理对调整增材制造金属的组织与力学性能具有重要意义。随着增材制造技术的发展,后续热处理工艺的研究已经逐渐为各国研究者所关注,并成为了增材制造领域一个重要的研究方向。结合典型增材制造金属材料的组织特征说明了研究热处理工艺的意义所在,综述了近年来增材制造金属热处理工艺的研究现状,涉及的材料包括钛合金、镍基合金、钢等,重点阐述了热处理前后材料组织与力学性能的变化,并分析了未来这一技术潜在的发展方向。  相似文献   

7.
传统的电弧熔丝增材技术在大型构件生产中容易形成残余应力影响构件性能,而摆动电弧熔丝增材技术可以有效改善残余应力,因此针对摆动电弧熔丝增材技术,综述了摆动电弧熔丝增材技术残余应力形成机理、消除或控制残余应力的研究和工艺方法;阐述了摆动电弧熔丝增材技术的工艺参数及增材路径对温度场及残余应力的影响,最后简要介绍了摆动电弧熔丝增材技术的应用案例,以期为提高电弧熔丝增材构件力学性能提供引导。  相似文献   

8.
电弧熔丝增材制造工艺由于其操作流程简便,环境开放,可生产零件范围广等优点引起了世界各国学者的极大兴趣和广泛关注。大型电弧熔丝增材设备作为此工艺实际应用的硬件基础也成为了国内外学者以及企业关注的对象。本文对大型电弧熔丝增材设备进行了简要介绍,回顾了电弧熔丝增材设备的发展历史和介绍了电弧熔丝增材设备的最新研究进展。此外,本文还对大型电弧熔丝增材设备的未来发展方向进行了展望。  相似文献   

9.
金属零件的修复技术是飞机维修的核心技术,其发展关乎我国航空维修水平与能力的提高.针对飞机领域涉及的金属零件修复技术,包括钨极氩弧焊、等离子弧焊、搅拌摩擦焊等焊接修复技术和激光直接沉积、电子束熔丝沉积、冷喷涂等增材制造修复技术,分析其工艺特点、优势,梳理其技术研究和工程应用现状.指出了国内外航空修复技术研究与应用存在的差距,并对该领域未来的发展趋势、研究方向和重点做出了研判.  相似文献   

10.
提出了一种针对小型金属零部件的低成本、高精度的焦耳热金属熔丝增材制造技术。在此过程中,系统温度场和热历史对于实验分析具有重要意义。本研究主要利用有限元仿真软件建立三维焦耳热金属熔丝增材制造的热-电-结构耦合有限元模型,分析了制造过程中温度场变化规律以及丝材内部和基板的温度分布和等温面形状。结果表明:焦耳热在丝材与滚轮之间产生,丝材内部在0.1 s内升温至2700 ℃,滚轮移动后,最大温度位置随着滚轮的移动而移动,丝材内部温度梯度呈拱形,基板温度梯度呈半椭球形。模拟结果的截面熔核区域与实验截面熔核区域吻合较好。因此,所建立的有限元模型能够较准确地模拟焦耳热熔丝增材制造过程温度场,对实验机理的研究和后期的进一步加工有着重要指导意义。  相似文献   

11.
增材制造技术(3D打印)是先进制造技术的重要发展方向,已经应用到航空航天、汽车工业、生物医学等重要领域中。自2004年首次剥离出单层石墨烯后,石墨烯等二维晶体材料逐渐成为了复合材料领域的研究热点。其表现出的优良力学性能及导电导热性使其更加适用于增强相材料。石墨烯与金属合金复合,通过调整石墨烯增强相的含量和分布,有望大幅提高金属基体材料的力学强度、导电导热等性能,获得性能优异的结构功能一体化材料。激光增材制造技术和石墨烯纳米片高比表面积和各向异性的优点相结合,对石墨烯与金属粉末进一步加工混合,再逐层打印构造3D 结构,已成为一个全新的研究方向,正在引领着第四代工业革命的进展。本文以激光增材制造技术为主体,从三个角度综述激光增材制造技术制备金属基石墨烯复合材料的研究进展,即激光增材制造技术制备石墨烯铝、镍及其他金属基复合材料,对比了形成工艺以及材料的性能,并分析了今后可能的发展方向。  相似文献   

12.
钛合金高强度、高耐热的特性决定了其在航空航天、船舶制造等领域的广泛应用,但由于钛合金的难加工性,使得传统锻造+机加的方式模具损耗严重、制造周期长。增材制造作为一种制造成本低、成形效率高的绿色化制造工艺,凭借其无需模具、直接成形的优势在钛合金制造领域受到国内外学者的广泛关注。电弧增材制造技术相较于其他增材工艺(如激光增材制造、电子束增材制造等)沉积效率更高,不受零件尺寸的限制,在大型和超大型结构件的制造中具有突出优势,其中基于冷金属过渡(Cold metal transfer,CMT)的电弧增材制造技术由于沉积过程更稳定、热输入量更低,已逐渐成为钛合金增材制造领域的研究热点。文中对基于冷金属过渡的钛合金电弧增材制造技术的研究现状进行综述,介绍钛合金打印件的微观组织和力学性能特征,总结分析了成形参数对打印件微观组织与力学性能的影响规律,并概述了形核条件调控、轧制和超声冲击等辅助技术对打印件微观组织与力学性能的影响机制,最后展望了钛合金CMT电弧增材制造的未来发展趋势。  相似文献   

13.
激光熔丝增材制造作为一种定向能量沉积技术,具有很好的发展前景。文中对国内外激光熔丝增材制造监测与控制系统进行归纳概述。现阶段,国内外激光熔丝增材制造常见的监测系统包括结构光扫描系统、红外测温成像系统等,实时监测沉积层高度、熔池状态;常见的控制系统为以闭环控制策略为主的在线反馈送丝速率控制系统、在线反馈激光功率控制系统等,在线监测系统与控制系统协同作用,能够显著优化增材制造工艺、提高成形质量。介绍了包括三维超声波扫描技术、电磁振动监测技术在内的新兴激光熔丝增材制造监测技术。结合激光熔丝增材制造技术的工艺难题对下一代监测与控制系统进行展望。国内外对沉积层高度和宽度、熔池尺寸和温度等监测对象已有较为充分的研究和试验验证,但在沉积过程中,由于激光的高能量密度会造成高温度梯度,因此对沉积过程在线高精度、高质量监测与控制技术的研究变得至关重要。 创新点: 激光熔丝增材制造成形精度要求高,同时国内外对该技术的相关工艺、成形原位控制的研究处于起步阶段,对沉积层、熔池偏差的实时监测与控制进行深入研究具有重要意义。  相似文献   

14.
金属点阵结构是一种轻质多功能结构,具有高比强度、高比刚度、抗爆吸能、减振降噪等优势,在飞行器、船舶、车辆、建筑等领域具有广泛的应用前景。然而,迄今为止点阵结构件的应用规模仍然十分有限,主要原因是受到制造技术的严重制约。电弧增材制造技术因其离散堆积的成形特点有望实现点阵复杂结构的一体化高效低成本制造。综合分析了电弧增材制造金属空间杆结构与点阵结构的研究现状,从制造原理、成形工艺与方法、制造特点等方面进行论述,并归纳了现阶段各研究机构对于金属点阵电弧增材制造的研究进展。最后介绍了电弧增材造金属点阵结构存在的掣肘,重点分析了现有电弧增材制造在点阵制造与成形控制方面的研究进展与不足,指出了未来电弧增材制造金属点阵结构的主要发展方向。  相似文献   

15.
数字经济高速发展趋势下,增材制造与数字孪生的技术融合发展,是高端制造业数字化转型的必然趋势,备受社会各界关注。综述了增材制造与数字孪生技术的由来、定义及关键技术,分析了数字孪生技术在增材制造领域的系统框架与应用现状,提出了基于增材制造数字孪生产品开发及其行业领域应用需求的系统技术架构,并详述了重点研究方向及关键技术,探讨了增材制造数字孪生技术的发展趋势及应用前景。本研究将为推动数字孪生与增材制造的融合技术研究以及应用产品开发提供创新思路。  相似文献   

16.
丝材电弧增材制造技术因其成形速度快、成形件尺寸灵活等优点受到越来越多的关注,尤其是大尺寸、复杂形状构件的高效快速成形,丝材电弧增材制造有着其独特的优势。介绍了丝材电弧增材制造技术的工艺过程,从丝材电弧增材制造成形件的成形工艺及表面质量研究、成形件组织性能研究以及成形件残余应力研究三个方面综述国内外丝材电弧增材制造技术的研究现状,总结该技术现阶段在航空航天领域的应用情况,指出研究人员对丝材电弧增材制造技术的相关研究工作聚焦于工艺优化和过程控制两个方向,怎样才能通过熔滴的平稳过渡获得高质量的成形件,如何有效控制逐层堆积过程中晶粒及显微组织变化,以抑制零件内部不良组织的产生是需要继续研究的问题。  相似文献   

17.
增材制造技术,也称3D打印技术,是一种采用材料逐渐累加的方法制造实体零件的技术,由于具有成形速度快、材料利用率高、生产周期短与数字化程度高等特点,近20年来成为各国科学家研究的热点。随着激光技术、计算机技术、CAD/CAM等技术的快速发展,增材制造技术在航空航天、汽车生产、生物制造、建筑设计等诸多工程领域得到了广泛的应用。介绍了增材制造技术的主要分类、工作原理、应用领域及其国内外研究现状,总结了各类关键技术所面临的问题,并讨论了其未来发展趋势。  相似文献   

18.
航空航天、武器装备等重要领域对轻量化材料的需求日益迫切,镁合金作为质量最轻的金属结构材料逐渐受到广泛关注。随着科学技术的高速发展,经过拓扑优化设计的增材制造镁合金零部件可以进一步在结构上实现轻量化,成为镁合金成形及应用的重点研究方向。本文详细介绍了关于镁合金增材制造的国内外研究现状,综合分析了镁合金增材制造研究中目前存在的主要问题,对镁合金增材制造成形技术的未来发展进行了展望。  相似文献   

19.
金属增材制造在航空航天、医用植入等领域有良好的应用前景,但成型表面质量差,未经后处理加工无法满足高使役性要求,抛光加工是高性能金属增材制造技术链中的关键环节。概述了增材制造金属零件应用现状和生长过程固有的阶梯效应、球化效应、粉末粘附等特性,以及成型表面高粗糙度等形貌特征。在此基础上,重点综述了增材制造金属零件抛光加工中应用较广的电化学、激光、磨料流三种抛光技术的研究进展,以不同制造工艺、不同金属粉末材质、不同结构形式(多孔结构、高长径比流道等)的增材制造样件为主线,通过表面粗糙度、材料去除、表层残余应力、廓形精度保持性等技术指标,对增材制造金属零件抛光加工研究成果进行了归纳总结。最后展望了增材制造金属零件抛光技术的发展方向。  相似文献   

20.
金属钽是一种具有优异耐腐蚀性、生物相容性和介电性能的难熔金属材料,因而被广泛应用于高温技术、电子技术、耐腐工程、原子能以及医疗等行业。增材制造技术能够实现复杂钽金属零件的一体化成形,并且材料利用率高、可实现个性化定制。本文介绍了增材制造用球形金属钽粉的研究现状,评述了钽金属粉末及增材制造成形后的组织和性能研究及应用进展,分析了钽金属增材制造技术当前存在的一些问题,并对该技术的未来发展进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号