首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 843 毫秒
1.
镁锰合金的晶粒细化及其耐蚀性的研究   总被引:3,自引:2,他引:3  
通过实验对镁锰合金的晶粒细化和耐蚀性进行了探索.结果表明:在镁锰合金中加入Ca元素可以使其晶粒显著的细化,耐蚀性也得到了很大提高.  相似文献   

2.
采用金相显微镜、静态失重腐蚀试验和电化学工作站,研究了不同Ca含量对ZA104合金在3.5%的NaCl溶液中耐腐蚀性的影响。结果表明,随着Ca含量增加,ZA104镁合金在NaCl溶液中的静态失重腐蚀速率先减小后增加;添加Ca后,ZA104合金的自腐蚀电位均增大,当Ca含量为0.3%时,合金的极化曲线表明其自腐蚀电流密度值最低,耐蚀性最好。Ca的添加有利于细化合金组织,提高合金的耐腐蚀性能。  相似文献   

3.
Mg-Zn-Ca三元镁合金生物材料的腐蚀行为   总被引:6,自引:0,他引:6  
以Zn与Ca为合金组元,采用熔融浇注法制备3种Ca含量分别为1%、2%和3%的Mg-Zn-Ca三元镁合金生物可降解材料,并对3种镁合金在Hank模拟体液中的质量损失腐蚀及电化学腐蚀行为进行研究。对不同腐蚀时间的合金表面形貌以及合金组织和相成分进行分析。结果表明:镁合金的腐蚀是从镁基相的点蚀开始的,含Ca量为1%的镁合金表现出良好的抗腐蚀性能;合金中Mg2Ca相的分布显著影响合金的耐腐蚀性能,合金体中Mg2Ca相的含量随着合金中Ca含量的增加而增加,导致合金的抗腐蚀性能变差。  相似文献   

4.
熔炼工艺对Mg-2Mn-1Si-0.25Ca镁合金组织和性能的影响   总被引:2,自引:0,他引:2  
探索了熔炼时元素的不同加入次序对Mg-2Mn-1Si-0.25Ca合金相组成的影响,并研究了该合金的组织和性能.结果表明:铸态Mg-2Mn-1Si-0.25Ca合金组织由α镁基体,β(锰)和颗粒状的Mg2Si组成.熔炼时先加锰后加硅时,合金中含α-Mg、Mg2Si、MnSi和β(Mn)相,Mg2Si相较少.先加硅后加锰时,合金中只含α-Mg、Mg2Si和β(Mn)相.熔炼时先加硅后加锰的合金硬度明显高于先加锰后加硅的合金.  相似文献   

5.
通过合金化、均匀化热处理和正挤压制备Mg-1Zn-1Ca(质量分数,%)合金,采用电化学方法、浸泡腐蚀法研究合金在人体模拟体液(SBF)中的腐蚀行为.采用OM和SEM观察合金组织和腐蚀产物层形貌,用SEM附带的EDS分析合金相成分和腐蚀产物成分,采用Fourier变换红外吸收光谱对腐蚀产物官能团进行结构分析,结合XRD结果确定腐蚀产物的相组成.结果表明,Mg-1Zn-1Ca合金由a-Mg,Mg2Ca和Ca2Mg6Zn3组成.在SBF溶液中浸泡72 h后,Mg-1Zn-1Ca合金的腐蚀产物为HA(Ca10(OH)2(PO4)6),Ca CO3,Mg Cl2和Mg(OH)2.在浸泡腐蚀过程中,高活性的Mg2Ca相作为阳极率先发生腐蚀,从而对周围a-Mg基体起到一定保护作用,而Ca2Mg6Zn3相活性最低,加剧了a-Mg基体的腐蚀.正挤压态合金耐蚀性能优于铸态合金的耐蚀性能.  相似文献   

6.
利用静态失重法和金相观察研究了0.5%的Ce、0.2%的Ca、0.2%的Sr(质量分数)复合合金化对AZ91镁合金在质量分数为3.5%的NaCl水溶液中的腐蚀行为。结果表明,0.5%的Ce、0.2%的Ca、0.2%的Sr复合加入显著降低合金的腐蚀速率,其耐蚀性明显高于AZ91基体合金,也优于单独添加0.5%的Ce的合金。腐蚀性能提高的原因主要归结为:复合合金化导致α-Mg晶粒明显细化,Al元素的偏析减轻,块状的β-Mg17Al12相变为非连续网状分布。  相似文献   

7.
研究了Ca和Zr元素对AZ31镁合金铸态显微组织和力学性能的影响,并探讨其化学成分与组织结构和力学性能之间的变化.结果表明,在AZ31镁合金中加入Ca后,合金的组织明显细化,晶间析出相增多,β Mg17Al12相数量减少,当Ca含量为0.37%时,在晶界上出现了新相Al2Ca相,Al2Ca相对合金有强化作用,合金的抗拉强度为190.4 MPa.当Ca含量达到1.54%时,晶粒尺寸最小为63.4 μm;采用电磁悬浮铸造技术,在AZ31镁合金中加入Zr,可以细化合金的显微组织,提高其力学性能,当Zr含量达到0.07%时,合金的抗拉强度为210.8 MPa,与铸态AZ31镁合金相比提高了19.56%,伸长率为12.9%,提高了20.56%.  相似文献   

8.
Ca对镁合金组织、力学性能和腐蚀性能的影响   总被引:20,自引:2,他引:20  
研究了Ca对AZ91D镁合金显微组织、力学性能和腐蚀性能的影响.当AZ91D中加人的Ca含量大于1.0%时,β相(Mg17Al12)减少,并且在晶界上形成了网状分布的Al2Ca相.拉伸测试表明,当加入Ca含量小于1%时,可以提高合金的常温抗拉强度和延伸率,继续增大Ca含量时合金的力学性能明显下降.当AZ91D中加入的Ca含量达到1.0%时,常温抗拉强度和延伸率较AZ91D分别提高了8.2%和29.3%,并且腐蚀速率下降为AZ91D的17.2%.其原因主要是由于形成了网状分布的Al2Ca相,使镁合金的自腐蚀电位升高,腐蚀电流密度降低,从而阻碍了镁合金的腐蚀.  相似文献   

9.
通过失重法、析氢实验、pH值测定和动电位电化学测试等方法.研究了挤压态Mg-0.54Ca和Mg-1.33Li-0.6Ca合金在模拟体液中的腐蚀降解行为,并利用OM和SEM对合金显微组织及腐蚀形貌进行了观察,采用XRD对基体及腐蚀产物的相结构进行分析.结果表明,Mg-1.33Li-0.6Ca合金的组织由α-Mg基体和Mg_2Ca及CaLi_2第二相组成,而Mg-0.54Ca合金的组织由α-Mg基体和第二相Mg_2Ca组成;Mg-1.33Li-0.6Ca合金在Hank's溶液中浸泡初期的耐蚀性能略低于Mg-0.54Ca合金,随着浸泡时间的延长,其耐蚀性能明显优于Mg-0.54Ca合金,主要原因是Li提高了Mg-1.33Li-0.6Ca合金腐蚀产物的致密性;Mg-1.33Li-0.6Ca合金的腐蚀产物为LiH.Mg(OH)_2,MgCO_3,CaCO_3,CaMgCO_3和CaMgPO_4,而Mg-0.54Ca合金腐蚀产物为MgCO_3,CaCO_3和CaMgPO_4.Mg-0.54Ca和Mg-1.33Li-0.6Ca合金在模拟体液中的腐蚀类型都为点蚀和丝状腐蚀.  相似文献   

10.
为开发生物医用镁合金,利用高纯原材料,在氩气气氛保护下熔炼浇铸制备了Ca合金化的Mg-4Zn合金(Ca含量分别为0.4%和1.0%,质量分数)。通过OM、SEM以及XRD分析了合金的微观组织和相组成,采用析氢法、腐蚀质量损失法以及电化学法测试了合金在Hanks模拟体液中的腐蚀行为。结果表明,合金由初生Mg固溶体和共晶体组成;随Ca含量增加,合金的电荷传递电阻减小,自腐蚀电位下降,自腐蚀电流密度增加;析氢法和腐蚀质量损失法均表明合金的腐蚀速率随时间延长而减小。共晶体对合金的耐蚀性有影响;当Ca含量从0.4%增加到1.0%时,共晶体含量增加,促进了合金的电偶腐蚀,合金耐蚀性降低。Mg-4Zn-(0.4,1)Ca合金的腐蚀形式主要为晶间腐蚀和点蚀。  相似文献   

11.
利用激光熔覆技术制备的高熵合金涂层已成为一种新兴的绿色清洁耐腐蚀涂层.为了最大程度发挥高熵合金涂层的耐腐蚀防护性能,需要探究激光熔覆高熵合金涂层耐腐蚀性能的影响因素及影响机理.首先阐述了高熵合金理论以及利用激光熔覆技术制备高熵合金涂层的优势,总结了高熵合金激光熔覆涂层优异耐腐蚀特性及耐腐蚀强化机理.重点综述了高熵合金元素组成、激光熔覆工艺参数、涂层后处理工艺以及服役温度4个因素,对高熵合金激光熔覆涂层耐腐蚀性能的影响规律与影响机理.高熵合金中适当添加Ni、Al、Ti等元素,在一定程度上可以提高涂层的耐腐蚀性,但是随着元素含量的进一步增加,由于高熵合金涂层的物相组成改变、晶格畸变严重、元素偏析加剧,可能导致涂层的耐腐蚀性能降低.适宜的激光加工参数可以使涂层具有较好的耐腐蚀性,原因在于涂层的缺陷较少、组织细密均匀.退火、激光重熔、超声冲击处理等涂层后处理工艺,通过改变高熵合金涂层的物相组成以及微观组织特征,来提高其耐腐蚀性.激光熔覆高熵合金涂层的服役环境温度越高,则腐蚀速率越快.最后,对激光熔覆高熵合金涂层的耐腐蚀性能强化方法进行了总结与展望.  相似文献   

12.
通过恒载荷应力腐蚀实验、扫描电镜(SEM)和透射电镜(TEM)等测试方法,研究了时效处理中析出行为的变化对AA2024铝合金应力腐蚀行为的影响。结果表明,合金在T3态时对应力腐蚀较为敏感,进行T8时效处理后,合金的应力腐蚀敏感性显著降低。利用高角环形暗场成像扫描透射电镜技术(HAADF-STEM)对合金进行准原位腐蚀实验观察,研究了合金T3和T8时效状态下的腐蚀过程和析出行为的变化情况,直观地展示了不同时效状态合金的腐蚀形态:T3态的合金为晶间腐蚀形貌,T8态的合金为晶间腐蚀和晶粒腐蚀相结合。由于析出行为和腐蚀机制的改变,不同时效状态的AA2024铝合金的应力腐蚀敏感性不同。  相似文献   

13.
硅烷处理对镁合金具有良好的保护性。为了抑制 Mg-7Gd-5Y-Nd-Zr (EW75) 稀土镁合金和 Ti-6Al-4V (TC4) 钛合金的电偶腐蚀作用,以自腐蚀镁合金为对照组,对硅烷改性和未改性的镁合金与TC4钛合金的电偶腐蚀进行了研究。用数码照片和扫描电镜 (SEM) 观察分析了浸泡 48 h 后的镁合金表面形貌,样品的自腐蚀电流密度和电偶腐蚀电流密度分别用极化曲线和电偶腐蚀测量来表征获得。结果表明,硅烷膜可以减少失重比,使腐蚀形式由点腐蚀变为均匀腐蚀,因此硅烷改性的镁合金比未改性的镁合金具有更好的抗电偶腐蚀能力,其原因是硅烷膜可以提高镁合金的电位,并减小电偶腐蚀电流密度  相似文献   

14.
缓蚀剂技术是一种简单有效抑制金属在腐蚀介质中遭到破坏的腐蚀防护手段,在钢铁、铜等传统金属上已有大量研究及应用。由于镁具有接受电子和给予电子能力都比较低的原子结构特点和高活泼的化学性质,对传统金属材料有效的缓蚀剂对镁合金作用并不理想,所以对镁合金的缓蚀剂研究较少、起步较晚。近年来,经过国内外研究机构的不懈努力,对镁合金缓蚀剂的开发和缓蚀机理的研究取得了一定突破,初步建立了镁合金缓蚀剂的评价体系。针对镁合金缓蚀剂的不同应用介质,结合镁合金缓蚀剂的化合物性质,阐述了镁合金缓蚀剂的构效关系、影响缓蚀效率的主要因素、复配缓蚀剂配方优化等最新研究动态,并介绍了其缓蚀机理或协同缓蚀机理。最后,结合镁合金缓蚀剂的研究现状以及新的研究方法及其检测技术的发展,对镁合金缓蚀剂未来的研究方向、发展趋势和应用领域的拓展提出了展望。  相似文献   

15.
采用电化学方法研究了Mg-14Li-1Al-0.1Ce合金在NaCl溶液中的腐蚀行为,采用扫描电镜观察腐蚀后的表面形貌,用失重法测试腐蚀速率,用X射线衍射(XRD)分析了腐蚀层和溶液中腐蚀颗粒的组成。结果表明,Mg-Li-Al-Ce合金的腐蚀速率随溶液Cl-浓度增大而增大,由失重法所得到的腐蚀速率远大于由腐蚀电流密度(Jcorr)计算所得的腐蚀速率。扫描电镜(SEM)观察表明,合金表面随溶液Cl-浓度增加而破坏严重。腐蚀产物层没有保护作用,在腐蚀产物下有明显的蚀坑和裂纹。XRD表明腐蚀产物层和溶液中腐蚀颗粒由Mg(OH)2、Li0.92Mg4.08和Li3Mg7组成。  相似文献   

16.
镁合金具有高比强度与良好的生物相容性,是一种理想的骨植入材料。因镁合金降解速率过快在临床应用中受到限制,通过SLM可对其合金化并改善耐蚀性能。利用SLM成型Mg-1Zn-xGd(x=0、0.25、0.5、1、2 wt%)合金,测试镁合金在模拟体液中浸泡72 h平均腐蚀速率变化趋势,采用SEM、EDS与TEM检测手段辅助分析腐蚀机理。实验结果表明,Gd含量对镁合金腐蚀速率影响显著,添加0~2 wt% Gd后镁合金降解速率呈先降低后升高趋势,在添加0.5 wt% Gd时镁合金具有最佳耐腐蚀性能。腐蚀反应产生的表面钝化膜能够一定程度减缓腐蚀的进行,添加过量Gd后沿晶界析出Mg5Gd相增多加剧了镁合金腐蚀。  相似文献   

17.
阳极极化处理对2024铝合金电偶腐蚀行为的影响   总被引:2,自引:1,他引:1  
将2024铝合金与电位较正的另一种金属钛连接加速腐蚀,通过测试电偶腐蚀电流的分布曲线,对比2024铝合金经阳极化处理前后的电偶腐蚀敏感性.腐蚀后,通过观察表面形貌,分析了该铝合金的电偶腐蚀行为,表明阳极极化处理对改善其电偶腐蚀敏感性有很明显的作用,降低了电偶腐蚀电流,减少了平均腐蚀失重.  相似文献   

18.
Zr对ZA35合金电化学腐蚀行为的影响   总被引:1,自引:0,他引:1  
刘敬福  李荣德  宋建  白彦华 《铸造》2012,61(3):308-311
为了探索Zr对ZA35合金电化学腐蚀性能的作用规律,采用开路电位测定、动电位扫描技术对不同Zr含量的ZA35合金的耐蚀性进行了研究.结果表明,电化学腐蚀条件下,在3.5%NaCl溶液中,与ZA35合金相比,添加0.2% Zr的ZA35-0.2%Zr合金的开路电位变正,腐蚀电流密度减小59.4%,耐腐蚀性增强.Zr对ZA35合金晶粒的细化和改变电极反应生成有保护性的腐蚀产物是提高ZA35合金耐电化学腐蚀性的主要因素.  相似文献   

19.
在自来水和3.5%NaCl溶液中测试了铸造AZ91D镁合金与铝合金、锌合金、Q235碳钢和Cu偶合后的电偶腐蚀行为,研究了腐蚀环境、偶接材料和阴阳极面积比(CAAR)对铸造AZ91D镁合金电偶腐蚀行为的影响。在电偶腐蚀过程中测量溶液的pH值以及电偶腐蚀电流;用失重法计算了铸造AZ91D镁合金的电偶腐蚀速率,利用SEM观察了AZ91D镁合金的腐蚀形貌,并对腐蚀产物进行XRD分析。结果表明,AZ91D镁合金在电偶腐蚀过程中会使溶液的pH值升高,并伴有以Mg(OH)2为主的腐蚀产物的生成;溶液中Cl-的存在会加速AZ91D镁合金的电偶腐蚀速率;低氢过电位金属Q235碳钢和Cu对AZ91D镁合金的电偶腐蚀加速效果明显高于中氢过电位金属铝合金和锌合金,偶接材料的极化性能对AZ91D镁合金的电偶腐蚀速率有较大影响。同时,大的阴阳极面积比会加速AZ91D镁合金的电偶腐蚀速率,且AZ91D镁合金的电偶腐蚀电流随阴阳极面积比的增大而呈线性增长趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号