首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 923 毫秒
1.
在温度为473~623 K、应变速率为0.1 s-1~0.001 s-1的条件下对7B04-T6铝合金板材进行温拉伸实验,研究该材料在所选定温度和应变速率下的流变应力变化数据.分别对Fields and Backofen方程和加入软化因子"s"的流变应力数学方程进行修正,建立该材料的两个流变应力数学模型.两模型中,Fi...  相似文献   

2.
Mg-Gd-Y-Zr镁合金热压缩流变应力的研究   总被引:2,自引:0,他引:2  
采用恒应变速率高温压缩模拟实验,对Mg-Gd-Y-Zr镁合金在应变速率为0.001~1.0s^-1、变形温度为150~500℃条件下的流变应力行为进行了研究,计算了变形激活能及相应的应力指数,建立了峰值流变应力方程。结果表明:在恒温条件下,合金的流变应力随应变速率的增大而增大;在恒应变速率条件下,合金的流变应力随温度的升高而降低;在350-500℃,0.001~1.s^-1的变形条件下,变形激活能和应力指数分别为2215kJ/mol和368;流变应力方程计算出的峰值应力与真实值基本吻合。  相似文献   

3.
耐热铝合金(FVS0812)板材温拉伸本构方程   总被引:8,自引:3,他引:8  
通过在523K~723K的温度范围内和应变速率为0.001s-1~0.1s-1下对耐热铝合金(FVS0812)板进行温拉伸实验,研究耐热铝合金板温拉伸性能,以及该合金在升温条件下流变应力与变形温度、应变速率之间的关系,并使用改进了的Fields and Backofen方程建立FVS0812合金在温拉伸时应力-应变本构模型。  相似文献   

4.
3003铝合金热变形流变应力特征   总被引:4,自引:1,他引:4  
采用Gleeble-1500热模拟机进行圆柱体压缩实验.研究了3003铝合金在变形温度为300~500℃、应变速率为0.01~10s^-1、真应变为0~0.8条件下的流变应力特征。结果表明.流变应力随温度升高而降低,随应变速率的提高而增大;在应变速率小于10s^-1。时,3003铝合金首先出现加工硬化,流变应力达到峰值后单调下降,趋于平稳,表现出动态回复的特征;而在应变速率为10s^-1、变形温度在350℃以上时,合金发生了局部动态再结晶;可用Zener-Hollomon参数的双曲正弦形式来描述3003铝合金热压缩变形时的流变应力行为。  相似文献   

5.
在AZ31B镁合金中添加0.8%的稀土元素Nd,应用Gleeble-1500D热/力学模拟试验机,在不同变形温度、不同应变速率下对AZ31B-0.8Nd镁合金的流变应力进行了研究。结果表明,镁合金在等温压缩变形过程中,变形温度和应变速率对流变应力和组织有显著的影响,流变应力随着变形温度的升高和应变速率的降低而降低,变形温度在350~400℃,应变速率为0.1s^-1条件下合金的组织细小均匀。  相似文献   

6.
Mg-3Al-1Zn-0.8Nd合金热压缩变形流变应力的研究   总被引:4,自引:2,他引:2  
使用Gleeble-1500D热模拟实验机对含稀土Nd的镁合金Mg-3Al-1Zn-0.8Nd在变形温度为250-450℃,应变速率为0.01-1s-1条件下的流变应力进行研究。研究结果表明:该合金的流变应力强烈地受变形温度与应变速率的影响。合金的流变应力随变形温度的升高而下降,随应变速率的增加而增加且在变形温度为450℃,应变速率为0.01s^-1时呈稳态流变。该合金的流变应力与变形温度、应变速率的关系可以用幂指数关系描述。在本实验条件下,该合金的变形激活能为154.064kJ·mol^-1。  相似文献   

7.
采用Gleeble.3800热模拟机研究了铸态00Cr25Ni7Mo4N双相不锈钢在应变速率为0.1s^-1。10s^-1,变形温度为1000,1200℃下的热变形行为,分析了流变应力与应变速率以及变形温度之间的关系。结果发现在同一应变速率下随温度的升高峰值应力值σp。减小;在同一温度下随着应变速率的减小峰值应力值σp也减小,并获得了在热变形条件下该双相不锈钢的热变形方程以及其它热变形参数,计算出该双相不锈钢的热变形激活能为433kJ/mol。  相似文献   

8.
通过单轴拉伸试验研究工业纯钛在283K至573K下应变速率范围为0.00005s-1~0.005s-1的流动应力行为。基于Fields–Backofen 方程,确定工业纯钛应变速率敏感性及应变强化指数随温度的定量变化。结果表明:工业纯钛的应变速率敏感性在283K-423K不显著,应变强化指数在353K-573K随温度变化而增加。基于温度变化的修正型Fields–Backofen 方程,建立了能够描述工业纯钛塑性流动应力行为的数学模型。同时,考虑应变、应变速率及温度之间的相互作用,对传统的Johnson-Cook 方程进行改进。与传统的Johnson-Cook 方程相比,改进型的Johnson-Cook 方程与实验结果吻合更好,证明改进型Johnson-Cook 方程预测工业纯钛塑性流动应力的精确性。  相似文献   

9.
采用GLEEBLE-1500热模拟机对Mg-10Gd-2Y-O.6Zr合金在温度为350-450℃,变形速率为0.001~0.5s,最大变形程度为50%的条件下,进行了恒应变速率高温压缩模拟试验研究,分析了合金高温变形时流变应力与应变速率及变形温度之间的关系以及组织变化。结果表明:合金的稳态流变应力随应变速率的增大而增大,随温度的升高而降低;在给定的变形条件下,计算出合金的变形激活能和应力指数分别为223kJ/mol和6.9,建立了合金高温变形的本构方程;根据试验分析,合金变形温度为400℃,变形速率为0.5s^-1,或变形温度为450℃,变形速率为0.1s^-1下进行热压缩,可以得到组织结构均匀和热翅性加工良好的匹配.  相似文献   

10.
采用Gleeble-1500D热模拟机对AZ31B-0.8Nd稀土镁合金在应变速率为0.01~1s^-1,温度为300~450℃,最大变形量约为70%的条件下,进行了恒应变速率高温压缩模拟实验,研究了实验合金在高温变形时的流变应力与应变速率及变形温度之间的关系和组织变化。结果表明:合金的流变应力随应变速率的增大而增加.随应变温度的升高而减小;在应变速率和变形温度相同时,挤压态试样的流变应力明显低于铸态试样的流变应力。压缩变形量对应力应变关系的影响很小。探明了镁合金变形软化的主要机制是动态再结晶。根据实验分析,合金的热加工宜在400~450℃温度范围内进行,并且挤压态较铸态更易热挤压成型,更有助于晶粒细化。  相似文献   

11.
在温度为100℃~525℃,应变速率为0.008s-1、0.013s-1条件下,采用恒应变速率法研究AA5083合金板的流变行为,以及流变应力、变形温度与应变速率之间的关系。结果表明,在该条件下,AA5083合金受应变速率硬化与应变硬化共同作用;其应变速率敏感性指数随温度的升高逐渐增大,应变硬化指数随温度的升高逐渐减弱至零,而后略有增大。建立了材料基于温度变化的修正Fields-Backofen本构模型,其值与实验值吻合良好。  相似文献   

12.
30Cr3MoV钢热压缩流变应力行为研究   总被引:2,自引:0,他引:2  
利用Gleeble-3500进行热模拟压缩实验,对低合金钢30Cr3MoV在1173~1473 K变形温度以及0.1-10 s(-1)应变速率条件下的高温流变应力行为进行了研究.通过对真应力-真应变曲线进行分析得到该材料的形变激活能、流变应力本构方程以及峰值应变和峰值应力与变形温度、应变速率之间的关系方程.  相似文献   

13.
在温度1323-1473 K,应变速率0.001-1 s-1的范围内研究了Ti-43Al-4Nb-1.4W-0.6B 合金的热压缩变形行为,其真应力-真应变曲线表明合金在变形过程出现了动态软化行为。依据经过摩擦和温度修正后流变应力的曲线,获得了该合金的本构方程,其中Zener-Holloman指数方程描述了温度和应变速率对变形行为的影响,以此构建五次多项式组来描述应变对材料参数的影响,其预测结果与实验结果相符。同时,建立了该合金的热加工图,并据此加工图预测出该合金合适的加工参数为1343 K和0.02 s-1,且成功地完成了在工业生产条件下对圆柱形试样的锻造。  相似文献   

14.
研究了质量分数为1%稀土Y掺杂对Mg-3.0Zn-0.6Zr合金在变形温度为523~723 K、应变速率为0.001~1 s-1范围内的热压缩变形性能的影响。基于动态材料模型建立的加工图,借助光学显微镜、扫描电镜和X射线衍射仪等设备,结合流变特征、微观组织结构演变,分析了Y添加对合金热变形机制及工艺参数的影响。结果表明,流变应力受变形条件影响较大,随变形温度的降低或应变速率的升高而增大;Y掺杂对流变曲线变化趋势影响较小,而对应力水平影响较大,各变形条件下均有不同程度提高,最大增幅约40%。另外,Y添加扩大了功率耗散区域,功率峰值约增大22%并转移至673~723 K、0.1~1 s-1附近,失稳缩至523~723 K、0.001~0.01 s-1的马鞍形区域,加工图给出的最优加工参数由高温低应变速率转移至523~723 K、0.1~1 s-1附近。  相似文献   

15.
研究了ZK31-1.5Y镁合金在变形温度为250~450℃、应变速率为0.001~1 s-1条件下的热压缩变形特性,基于动态材料模型建立了热加工图,并结合真应力-真应变曲线确定了该合金在实验条件下的热变形机制及最佳工艺参数。结果表明:ZK31-1.5Y合金的真应力-真应变曲线主要以动态再结晶和动态回复软化机制为特征,峰值应力和稳态应力随变形温度的降低或应变速率的升高显著增加。合金功率耗散图和失稳图中分别包含了3个效率峰值区和1个马鞍形流变失稳区,峰区效率范围为38%~65%,叠加后形成的加工图给出了实验参数范围内热变形时的最优工艺参数,其热变形温度为350~450℃、应变速率为0.1~1 s-1。当应变量由0.1~0.6逐渐增大时对加工图分布规律影响不大。  相似文献   

16.
汽车用5182铝合金温变形行为及组织   总被引:1,自引:0,他引:1  
通过单向温拉伸试验以及扫描电镜和透射电镜观察,研究了汽车用5182铝合金板在变形温度为323~573 K,应变速率为0.001~0.1 s-1条件下的流变行为及微观组织。结果表明,在变形温度≥448 K、应变速率.ε=0.001 s-1条件下,5182合金出现明显的峰值应力,而当应变速率0.01~0.1 s-1时,合金的流变应力呈现稳态;当应变速率.ε=0.001 s-1时,随着变形温度的升高,合金单向温拉伸断口由典型的混合型断裂特征演变成典型的韧性断裂特征,合金产生了动态再结晶。  相似文献   

17.
为确定镁合金AZ61热变形特性与制定合理的成形工艺参数,利用Gleeble-1500热模拟试验机研究该材料在变形温度523K~673K和应变速率0.001s-1~1s-1下的流变应力行为。根据实验数据,确定热变形激活能,建立峰值应力与温度和应变速率的关系式。采用两种不同方法,分别建立任意时刻流变应力与温度、应变速率和应变的关系式,并验证了流变应力方程的准确性。研究结果表明,直接考虑应变对应力的影响模型相对误差为5.46%,通过动态再结晶分数间接考虑应变对应力的影响模型相对误差为5.42%,两种模型的预测值均与实验值较吻合。  相似文献   

18.
对航空发动机用新型镍基高温合金GH3230在不同温度和应变速率下进行了高温拉伸-断裂试验,分析了应变速率和温度对该合金高温力学性能的影响。结果表明,随着应变速率的增加和温度的下降,合金的塑性流动应力有所提高,加工硬化指数下降。从流变应力、应变速率和温度的相关性,得到应变速率敏感系数是一个独立于温度的常量,并计算出GH3230合金的变形激活能=441 kJ/mol。GH3230合金的热变形温度在1273 K左右时,合金在变形过程中能够充分再结晶,并得到晶粒细小、均匀的组织。SEM断口分析表明GH3230合金在高温下(1144~1273 K)应变率范围为10-3~10-1 s-1时的拉伸断裂都是由损伤引起的韧性断裂,且温度对断口形貌影响不大,但应变速率增大会使韧窝尺寸和深浅变小。  相似文献   

19.
研究了热挤压态Mg-3Al-3Zn-1Ti-0.6RE镁合金的高温拉伸变形行为和微观组织演变,分析了该合金在温度为623K-723K,应变速率为1x10-4s-1-1x10-2s-1条件下的流变应力随温度和应变速率的变化,归纳了温度、应变速率与流变应力的关系。研究结果表明:温度和应变速率是影响流变应力的主要因素,在变形过程中,流变应力随变形温度的升高和应变速率的降低而减小。在本实验条件下,该合金的变形本构方程可用双曲正弦函数 来描述,应力指数n=3.286,激活能Q=238kJ/mol,表明该合金的高温塑性变形机制主要是位错滑移和攀移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号