首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
采用搅拌摩擦焊工艺对10 mm厚的5A06铝合金板进行焊接,研究了搅拌头转速(150~400 r/min)、焊接速度(50~200 mm/min)对接头显微组织、拉伸性能和硬度的影响。结果表明:在试验参数范围内焊接均可获得无宏观缺陷且成形良好的搅拌摩擦焊接头;接头焊核区晶粒细小、组织均匀,热机影响区晶粒相比焊核区的粗大,当搅拌头转速为400 r/min、焊接速度为50 mm/min时,接头焊核区和热机影响区的组织明显粗大;当焊接热输入特征值,即焊接速度与搅拌头转速的比值在0.3~0.5 mm/r时,焊接接头的拉伸性能与母材相当,其抗拉强度最高可达381 MPa,断后伸长率可达25.4%;接头焊核区硬度最高,热影响区硬度最低,当搅拌头转速为250 r/min、焊接速度为100 mm/min时,焊核区硬度较高。  相似文献   

2.
采用不同的工艺参数对3 mm厚的T2纯铜板材与5383铝合金板材进行了对接搅拌摩擦焊试验,并对焊接接头的显微组织、拉伸性能和耐腐蚀性能进行了测试与对比分析。结果表明,选择适当的工艺参数,可以实现T2纯铜板材与5383铝合金板材的对接搅拌摩擦焊,搅拌头旋转速度、焊接速度和轴肩压力都会影响接头的拉伸性能和耐腐蚀性能,其优选的工艺参数为:搅拌头旋转速度ω=950 r/min、焊接速度v=140 mm/min、ω/v=6.79、轴肩压力P=8 kN。  相似文献   

3.
采用搅拌摩擦焊对1. 5 mm和2 mm不同厚度5082铝合金板进行搭接焊,通过拉剪实验对焊接接头进行室温拉剪性能检测,用光学显微镜对接头横截面进行微观组织观察,用扫描电镜(SEM)对拉剪断口形貌进行分析。结果表明:在下压量为2. 485 mm、主轴的倾斜角度为3°、焊接速度为60 mm/min、搅拌头转速为800 r/min的工艺参数下,接头的拉剪强度可达228 N/mm2,拉剪断裂发生在薄板的前进侧热机影响区,断裂方式为韧-脆混合断裂;焊核区发生动态再结晶生成了细小的等轴晶,热机影响区组织发生塑性变形,热影响区组织与母材的相当。  相似文献   

4.
对3 mm厚的5754铝合金板材进行搅拌摩擦焊接,研究了搅拌头在转速800 r/min条件下,不同焊接速度(100 ~ 400 mm/min)对搅拌摩擦焊接头微观组织和力学性能的影响. 结果表明,5754铝合金FSW接头横截面形貌呈“盆”形. 随着焊接速度增加,5754铝合金FSW接头的焊核区和轴肩区的面积逐渐减小,而搅拌针区面积先增加后减小. 当焊接速度为300 mm/min时,搅拌针区面积达到最大值6.66 mm2,轴肩区和搅拌针区面积比例为0.97,5754铝合金FSW接头的强度系数达到97.5%,这主要是因为轴肩区和搅拌针区面积相近,增大了焊核区和热影响区界面面积,从而提高了FSW接头强度,拉伸断裂在焊核区以外(热影响区或基材区),断口为韧性断口. 当焊接速度为400 mm/min时,5754铝合金FSW接头的强度系数为58.8%,拉伸试样均断裂在焊核区,断口为脆性断口.  相似文献   

5.
对5 mm厚T2紫铜开展了搅拌摩擦焊工艺的研究,分析了焊接工艺参数对焊缝表面成形、接头宏观形貌、显微组织及力学性能的影响。结果表明,在较宽的焊接工艺参数范围内均可得到无内部缺陷的接头。接头宏观形貌由焊核区、热机影响区、热影响区和母材组成。随着搅拌头旋转速度的增加或焊接速度的降低,碗形的接头的宏观形貌轮廓逐渐模糊,焊核区的晶粒逐渐粗化,接头的抗拉强度逐渐降低。当焊接工艺参数为400 r/min,200mm/min时,接头的抗拉强度最高,达到母材的95. 9%,S线对接头拉伸性能无影响。热影响区的显微硬度值最低,与接头的断裂位置一致。  相似文献   

6.
采用搅拌摩擦焊双面焊工艺,对84 mm大厚板6082-T4铝合金型材对接接头进行了焊接,获得表面成形美观、光亮、无隧道孔和未熔合缺陷的焊接接头。应用光学显微镜、显微硬度仪及电子拉伸试验机等对搅拌摩擦焊接头组织与性能进行研究。试验结果表明,在焊接旋转速度为400 r/min,焊接速度为150 mm/min的工艺参数条件下,接头的抗拉强度达到217 MPa;接头断裂位置开始于焊缝前进侧热影响区与热力影响区的结合处;接头显微硬度最低值出现在双面焊重合区,为HV54。  相似文献   

7.
为满足异种铝合金结构件焊接需求,对10 mm厚的2A12T4/6061T6异种铝合金板进行了搅拌摩擦焊接试验,分析了不同工艺参数焊接接头的微观组织和性能。结果表明:焊接接头焊核区与热机械影响区分界在前进侧明显,而在返回侧不明显;除搅拌头旋转速度为700 r/min、前进速度为300 mm/min的焊接试样外,其余试样的拉伸断裂均发生在6061T6铝合金侧的热影响区,拉伸断裂均呈韧性断裂;焊核区的硬度比热影响区的硬度大,但比母材的硬度小,2A12T4铝合金侧的硬度明显高于6061T6铝合金侧的硬度。当搅拌头旋转速度为600 r/min、焊接速度为300 mm/min时,焊接接头的抗拉强度最高,为249 MPa。  相似文献   

8.
7050-T7451铝合金的搅拌摩擦焊接试验分析   总被引:1,自引:0,他引:1       下载免费PDF全文
在不同焊接参数下进行了7050-T7451铝合金的搅拌摩擦焊接试验,对接头显微组织进行了光学和TEM分析,并测试了接头的抗拉强度和硬度分布.焊接工艺参数通过影响接头微观组织和焊接缺陷来影响接头的力学性能,在转速800r/min和焊速200mm/min的情况下,接头的抗拉强度最高达到母材强度的88%.焊接热输入较高时,接头的拉伸断裂出现在热影响区,而热输入较低时,焊缝底部出现未焊合,接头从此处首先发生开裂.结果表明,焊核区发生了动态再结晶和沉淀相溶解;热影响区发生了沉淀相粗化,晶间出现无沉淀带.  相似文献   

9.
王永景  陈文静  许莉  刘岳 《热加工工艺》2014,(17):179-181,184
采用搅拌摩擦焊对6 mm厚6061-T6铝合金板在不同工艺参数下进行焊接。观察了接头的显微组织,研究了接头室温拉伸性能及晶间腐蚀性能,测试了接头腐蚀前后的显微硬度。结果表明:在搅拌头转速900r/min、焊接速度100 mm/min、焊后缓冷工艺下,可得到性能较好的接头,其抗拉强度可达到母材的74%。接头显微硬度呈现"W"型分布,存在明显的软化区,母材的硬度最高,热影响区的硬度最低。晶间腐蚀最严重的部位发生在焊核区,经腐蚀后接头硬度显著下降。  相似文献   

10.
通过对铝锂合金搅拌摩擦焊搭接接头组织与力学性能测试,分析了不同焊接工艺参数对搭接接头拉伸性能的影响.结果表明,搅拌针的长度对接头性能影响最大,搅拌针长度从2.8 mm变为2.5 mm时,所有接头强度和塑性均有明显增加.旋转频率/焊接速度(η)对接头性能也有影响,随着η小幅度增加,接头的强度和塑性都有一定提高.在旋转频率为800 r/min、焊接速度为200 mm/min(η=4)条件下,接头的强塑性最佳,抗拉强度达到467 MPa,为母材的94%,断后伸长率为3.18%.从断口形貌观察发现,拉伸试样从前进侧搭接界面的“钩状”位置起裂,沿热影响区扩展至母材发生断裂.  相似文献   

11.
采用不同搅拌头转速,研究了搅拌头转速对4 mm厚2205双相不锈钢板材搅拌摩擦焊接头组织及性能的影响. 结果表明,当焊接速度为50 mm/min时,搅拌头转速在600 ~ 800 r/min的范围内,均可获得表面成形良好且内部无缺陷的接头.接头搅拌区在动态再结晶的作用下组织得到细化,硬度值较高,热影响区在焊接热作用下组织粗化,硬度值较低.整个接头的铁素体含量在50% ~ 60%范围内,且随着转速的升高搅拌区的铁素体含量有所增加. 当转速为600 r/min时,接头的抗拉强度达到最大824 MPa,为母材的97.3%,断裂位置为接头的热影响区.  相似文献   

12.
王春桂  赵运强  董春林  邓军 《焊接学报》2018,39(10):108-112
对4 mm厚6063-T6铝合金进行了双轴肩搅拌摩擦焊接试验. 结果表明,双轴肩搅拌摩擦焊可以实现6063-T6铝合金的焊接,得到表面成形良好且内部无缺陷的接头. 接头宏观形貌为哑铃状,其微观形貌分为焊核区、热力影响区、热影响区及母材区. 在搅拌头转速为1 200 r/min,焊接速度为400~700 mm/min的工艺区间内,接头强度呈先升高后降低的趋势,最高可达181.64 MPa,为母材的68.5%,硬度分布呈W状分布,接头断裂位置位于前进侧热影响区,断裂方式为韧性断裂.  相似文献   

13.
Inconel 718镍基合金与304不锈钢电子束焊接   总被引:1,自引:0,他引:1       下载免费PDF全文
对Inconel 718镍基合金与304不锈钢进行了电子束焊接试验,分析了接头显微组织及力学性能. 结果表明,焊缝区中部由枝晶及细小的等轴晶组成,在近镍侧及近钢的熔合线,都由向焊缝中心方向生长的树枝晶组成. 各特征区域显微硬度值各不相同,焊缝区高于镍基合金侧,高于不锈钢侧. 当焊接束流为8 mA,焊接速度为700 mm/min时,接头的抗拉强度最高为722 MPa. 拉伸试样断裂发生于焊缝区内部,呈典型的延性断裂,断口可观察到明显等轴状韧窝.  相似文献   

14.
采用搅拌摩擦焊(FSW)完成了3 mm厚TC4钛合金和2A14-T14铝合金的连接,研究了搅拌头偏移对接头的成形及拉伸性能的影响。结果表明在搅拌头向铝合金侧的偏移对接头的最大抗拉强度有显著的影响。接头最大抗拉强度随搅拌头的偏移量的增加逐渐升高。在偏移量为2.0 mm、搅拌头转速从400 r/min增加到700 r/min时,接头的最大抗拉强度逐渐降低。在偏移量为2.5 mm、接头的最大抗拉强度随转速的增加逐渐升高。当在搅拌头转速为700 r/min, 焊接速度为60 mm/min时,所得接头强度最高,约347 MPa,为铝合金母材的83 %。接头的断裂位置和拉伸强度均取决于微观组织和金属间化合物。对于强度最高的接头,由于TiAl相的生成,接头于铝合金侧热影响区发生断裂。  相似文献   

15.
高速钢作为一种高硬度、高耐磨性和高耐热性特殊工具钢,应用于刀具、模具及特殊结构件上时,往往需要结合异种钢使用. 但高速钢焊接工艺研究仍不成熟,焊接中产生的裂纹与碳化物缺陷是制约高速钢应用的主要因素. 文中通过对W6Mo5Cr4V2高速钢与16Mn钢预置镍填充层后进行电子束焊接. 结果表明,镍中间层的引入有效的抑制了高速钢侧热影响区的开裂,接头呈不对称“漏斗形”. 焊缝组织主要由镍基固溶体与少量M2C碳化物构成,焊缝中无马氏体组织,其焊缝平均硬度为185 HV;接头抗拉强度达到378 MPa,为16Mn侧母材抗拉强度的75%. 拉伸断口断裂于距W6侧熔合线0.8 mm处的热影响区,为准解理断裂.  相似文献   

16.
针对2A12–T4铝合金薄板进行了搅拌摩擦焊搭接试验,研究了焊接参数对缺陷形态与接头性能的影响规律. 结果表明,勾状缺陷具有更大的高度和弯曲角度,最大缺陷高度为上板厚度的12.7%. 随焊接速度增大,缺陷高度减小.随转速提高,勾状缺陷高度先增加后减小,冷搭接缺陷高度呈“V”形变化. 在950 r/min,200 mm/min下接头强度最高,接头系数可达84%. 维氏显微硬度分布呈“W”形,上板出现接头软化,焊核区下部硬度高于上部硬度. 冷搭接缺陷是影响接头性能的主要因素,由于有效搭接宽度较小,接头断裂方式为沿搭接面的剪切断裂.  相似文献   

17.
铝合金无减薄搅拌摩擦焊工艺优化及特征分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为提高无减薄搅拌摩擦焊接头力学性能,基于响应面法对参数进行优化,建立了响应面模型,并对模型进行回归分析. 结果表明,无减薄搅拌摩擦焊是成形优良的焊接工艺,而且焊接参数对接头拉伸性能影响明显,其中主轴转速及焊接速度对其影响更为显著. 在无缺陷条件下,提高主轴转速的同时选取适中的焊接速度,以得到性能更优的焊接接头. 焊接参数为主轴转速1 000 r/min,焊接速度200 mm/min、轴肩下压量0.25 mm时,接头的抗拉强度最大为363 MPa,为母材的94.3%,断后伸长率11.2%. 而且相比于常规搅拌摩擦焊,无减薄搅拌摩擦焊在厚度方向上的性能更加均匀.  相似文献   

18.
姚磊  沈以赴  李博  胡伟叶 《焊接学报》2014,35(2):109-112
文中采用搅拌摩擦焊法搭接T2工业紫铜和TA2纯钛,研究了搭接接头的宏观形貌和微观组织结构,并测试了接头力学性能.结果表明,当选用搅拌头旋转频率为800 r/min,焊接速度为40 mm/min的工艺参数配比时,可以获得焊缝表面成形良好,连接界面无缺陷的搭接接头.在焊核区,钛和铜以相间的条带结构形式相互混合、紧密连接在一起,形成了涡流状的钛铜双相金属混合区域,而且某些区域呈现出"机械互锁"的组织形貌.钛铜搭接接头抗剪切力可达到铜母材失效载荷的95%,断裂位置位于搭接接头铜板前进侧,为典型的韧性断裂.  相似文献   

19.
对3.5 mm厚的C18000铜合金板进行搅拌摩擦焊焊接试验. 在焊接速度120 mm/min,转速1 200 r/min工艺下获得无缺陷焊接接头. 在金相显微镜下对接头的宏观形貌、微观组织进行观察,用扫描电镜和透射电镜对母材和搅拌区组织进行观察分析. 结果表明,接头区大致分为母材区、热影响区、热力影响区和搅拌区,搅拌区晶粒细小均匀,热力影响区晶粒沿边界切线方向被拉长;搅拌区Cr3Si相部分溶解,搅拌区组织中的Cr单质相和Ni2Si相溶解导致接头硬度和抗拉强度下降. 搅拌区平均硬度为151.4 HV;接头抗拉强度为497 MPa,达到母材的72%;接头电导率下降为35%IACS.  相似文献   

20.
进行了3 mm厚6063-T4铝合金双轴肩搅拌摩擦焊接。结果表明,当搅拌头转速为600 r/min,焊速在100~300 mm/min的范围内,可获得表面成形美观、内部无缺陷的优质接头。在接头搅拌区内,上、中、下各层硬度分布较为均匀,在热机影响区及热影响区内,上、下层硬度值高于中间层。热机影响区靠近搅拌区的位置以及热机影响区与热影响区的交界处为接头的两个薄弱位置。随着焊接速度的增加,接头各区域硬度值以及抗拉强度有着先增大后减小的趋势,所得最优接头抗拉强度为174 MPa,达到母材的87%,断裂位置位于热影响区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号