首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
18Cr2Ni4WA钢氮化层强化机理的研究   总被引:1,自引:0,他引:1  
本文应用薄膜透射电镜方法对经不同温度一段及二段氮化后的18Cr2Ni4WA钢的内氮化层显微组织及其强化本质进行了研究.结果表明,该钢内氮化层形成过程可分为二个阶段:1.合金元素及氮原子在铁素体基体{100}α面上形成有序化的混合偏聚区;2.由偏聚区转变成平衡沉淀相CrN,它与基体的位相关系符合Baker-Nutting关系:(001)_(CrN)∥(001)α;[110]CrN∥[100]α在较低温度氮化时,CrN还可由碳化物转变而成.造成内氮化层高硬度的主要原因是铁素体基体内形成弥散的有序化混合偏聚区.在420—500℃氮化的条件下,内氮化层强度达最高值.随氮化温度升高,其硬度逐渐下降.采用低温 高温二段氮化时,由于低温形成的有序化偏聚区相当稳定,从而使氮化层的高硬度能保持到较高的温度,所以二段氮化在保持内氮化层高硬度的同时可以加速氮化过程,缩短氮化时间.  相似文献   

2.
本文应用薄膜透射电镜方法对经不同温度一段及二段氮化后的18Cr2Ni4WA钢的内氮化层显微组织及其强化本质进行了研究.结果表明,该钢内氮化层形成过程可分为二个阶段:1.合金元素及氮原子在铁素体基体{100}α面上形成有序化的混合偏聚区;2.由偏聚区转变成平衡沉淀相CrN,它与基体的位相关系符合Baker-Nutting关系:(001)_(CrN)∥(001)α;[110]CrN∥[100]α在较低温度氮化时,CrN还可由碳化物转变而成.造成内氮化层高硬度的主要原因是铁素体基体内形成弥散的有序化混合偏聚区.在420—500℃氮化的条件下,内氮化层强度达最高值.随氮化温度升高,其硬度逐渐下降.采用低温+高温二段氮化时,由于低温形成的有序化偏聚区相当稳定,从而使氮化层的高硬度能保持到较高的温度,所以二段氮化在保持内氮化层高硬度的同时可以加速氮化过程,缩短氮化时间.  相似文献   

3.
通过对镍基合金进行不同温度的恒温氧化试验、横断面的组织形貌观察及微区成分分析,研究一种高Cr镍基合金在恒温氧化期间的氧化物分布特征、内氧化及内氮化行为。结果表明:该高Cr镍基合金在850、900、950和1 000℃空气中氧化100 h期间,合金表层发生元素的外氧化,且在外氧化膜中出现分层结构,由表及里各层中的主要氧化物分别为Al2O3、Cr2O3、NiCr2O4和NiAl2O4、Cr2O3、CrTaO4和Al2O3;合金在900℃以下为完全抗氧化级,900~1 000℃为抗氧化级。该合金在各温度的恒温氧化期间,均发生元素Al的内氧化和内氮化;与外氧化膜相邻的区域为元素Al的内氧化区,远离外氧化膜的基体内部形成元素Al的内氮化区;随恒温氧化温度的升高,内氧化区和内氮化区的深度增加,内氧化物和内氮化物的尺寸增大。其中,在内氧化物、内氮化物周围形成元素Al的贫化区,在贫化区内发生-′相的分解及贫乏。  相似文献   

4.
等离子表面复合渗合金层碳化物相的研究   总被引:6,自引:0,他引:6  
利用等离子表面合金化技术,在碳钢表面进行W、Mo、C共渗,共渗合金层中W当量质量分数超过10%,含碳量超过平衡碳计算值,碳饱和度达1.6以上,约是一般冶金高速钢碳饱和度的两倍。用X射线衍射分析了共渗合金层中碳化物的结构类型;用电子探针进行微区成分分析,测定碳化物的成分,并计算了碳化物中碳原子与合金元素之间的原子比。结果表明,共渗合金层中的碳化物主要是由合金元素W、Mo和C形成的M6C型碳化物及少量的M2C型碳化物。M6C型碳化物中碳原子与合金元素之间的原子比为1.6~3.2:1平均为2.4。与一般冶金低合金高速钢中的合金元素与碳原子比相比较,范围窄,且偏低。  相似文献   

5.
Nb-V微合金钢在1200℃同溶0.5 h后淬火,存450-650℃回火不同时间,用显微硬度和TEM测试并观察析出强化和组织软化现象,用三维原了探针(3DAP)对产生二次硬化的合金碳化物的成分进行定量分析,研究其析出长大规律.结果显示,二次硬化主要是合金碳化物析出强化的作用.随着同火温度的升高或回火时间的延长,合金碳化物的成分动态变化,即强碳化物形成元素取代或部分取代较弱的碳化物形成元素.首先,V和Nb取代Mo,然后Nb部分取代V,最后形成具有一定原子比的合金碳化物.相对回火温度,回火时间对碳化物内合金元素的相对含量影响不大.在合金碳化物长大过程中,薄片状碳化物优先沿径向方向生长,然后沿厚度方向长大并开始粗化.  相似文献   

6.
为解决直接氮化法制备AlN粉体过程中存在的问题,采用具有高饱和蒸气压的Zn元素作为原料铝合金的合金元素,研究了Zn元素对Al-Zn以及Al-Mg-Zn合金直接氮化制备AlN粉体的影响。结果表明:Zn元素的挥发可以在反应初期破坏合金熔体氮化形成的氮化膜,避免熔体结块,提高转化率;另一方面,试验及热力学分析表明Zn元素的脱氧作用较差,而Mg元素可以在氮化过程中脱去气氛中的氧,避免Al2O3的形成。因此,采用Al-Mg-Zn三元合金进行直接氮化能够得到低含氧量、低金属杂质残留的纯相AlN。  相似文献   

7.
回火马氏体中合金碳化物的3D原子探针表征Ⅲ.粗化   总被引:1,自引:0,他引:1  
Nb-V微合金钢在1200℃固溶0.5 h后淬火,在650℃回火4 h,利用SEM和HRTEM观察显微组织,合金碳化物的形貌特征和精细结构,用三维原子探针(3DAP)研究合金碳化物中元素分布规律.结果表明,淬火微合金钢在650℃回火4 h后,马氏体板条内位错和板条界面因回复而消失,粗化的合金碳化物分布在原马氏体板条界面和板条内部.同时,伴随着合金元素的再分配,早期析出的圆盘状碳化物沿厚度方向生长,出现一个与基体(M_(bcc))和原碳化物(P_(inner))成半共格关系的新生过渡相(P_(outer)).非碳化物形成元素Si和Al主要分布在碳化物/基体界面处;V和Mn主要分布在碳化物内层,而Mo和Nb分布在整个碳化物区域.粗化的碳化物是一种具有核心和外壳结构的合金碳化物,内层主要是V-Mn-Mo-Nb的碳化物,而外层主要是Mo-Nb的碳化物.  相似文献   

8.
双辉离子渗钨钼层渗碳组织的电镜分析   总被引:4,自引:1,他引:3  
采用双志了子渗金属技术,首先在低碳钢表面渗入合金元素钨、钼,然后作固溶处理,使金属间化合物溶于基体中,接着渗碳,使合金层内形成在碍区弥散、均匀、细小的合金碳化物。经淬及回火后的合金层具有高速钢组织及性能。对渗透了金属层渗碳后的组织进行了电子分析  相似文献   

9.
针对时效处理铸造镍基高温合金K52的碳化物,研究了其在强磁场作用下的组织形貌与化学成分变化规律。结果表明:在不同磁场条件下时效处理后,合金中碳化物MC和M23C6的组织形貌与分布基本相同,强磁场的施加对碳化物的组织形貌与分布并未产生显著影响,但经强磁场条件下时效处理后,MC和M23C6中强碳化物形成元素W、Mo、Nb和Ti含量有所增加,而弱碳化物形成元素Cr和非碳化物形成元素Co、和Ni含量显著降低。分析指出强磁场的施加可能提高了强碳化物形成元素与C间的亲和力,增强了其形成碳化物的倾向;同时其可能减弱了弱碳化物形成元素和非碳化物形成元素与C间的亲和力,从而使其在碳化物中存在的倾向也进一步降低。  相似文献   

10.
原始颗粒边界(PPB)是在粉末加热固结过程中MC型碳化物在颗粒边界析出造成的,利用扫描电镜(SEM)和电子探针X射线显微分析仪(EPMA)研究了 MC型碳化物在镍基高温合金中的溶解度与粉末高温合金中原始颗粒边界(PPB)的关系.结果表明:强碳化物形成元素(Ti、Zr、Hf、Nb、Ta)对应的MC型碳化物在镍与镍基高温合金中的溶解度顺序为:TiC>NbC>TaC>ZrC>HfC,同时温度越高MC型碳化物的溶解度越大;在镍基高温合金中溶解度较大的TiC容易在粉末高温合金的PPB上析出,而溶解度较小的TaC则避免了这种现象.未添加Ta元素的FGH4098合金中原始颗粒边界(PPB)上的MC型碳化物主要为TiC;添加Ta元素的FGH4098合金,制粉过程中会在粉末颗粒内部析出更多的含Ta的MC'型碳化物,在随后的热等静压过程中,这种MC'碳化物转变成为更高稳定性的MC型碳化物(Ta,Ti,Nb)C.(Ta,Ti,Nb)C存在富Ti的核心,Ti和C元素被"固定"在了碳化物中,阻碍了 MC型碳化物在PPB上析出.  相似文献   

11.
特殊钢中的合金元素主要分为强烈碳化物形成元素和稳定奥氏体元素,它们的热力学性质和对碳扩散的影响不同。合金元素增加钢的淬透性可由影响相变速率和形核的理论来解释。合金元素对淬火——回火钢性能的影响可归结于合金元素对 M_s 温度、马氏体形态、残余奥氏体量及分布以及对回火组织的变化。合金元素在铁素体中的扩散率影响回火时的二次硬化效果。微量强烈碳化物合金元素通过细化铁素体和碳化物使正火钢的强度由200~300MN·m~(-2)提高到450~500MN·M~(-2),成为正火钢发展的方向。这些极为弥散的碳化物系相界沉淀和纤维析出。以 Ti 代 V 或以 N 代 C 可使碳化物延迟粗化。  相似文献   

12.
采用TEM、EDS、碳萃取复型等手段,研究了高速钢回火组织与性能演变规律,重点分析了过回火阶段合金碳化物演变与元素分配行为。结果表明,550℃回火后,高速钢组织中析出大量与基体共格的纳米级合金碳化物MC和M2C,硬度达到峰值。过回火阶段,M2C碳化物尺寸粗化倾向明显,并且发生结构转变,形成M23C6和M6C,而MC碳化物则表现出较高的尺寸和结构稳定性,对高速钢保持高温性能稳定发挥主要作用。随回火温度升高,碳化物中Fe含量明显下降、强碳化物形成元素含量上升,对碳化物析出和粗化行为产生重要影响。  相似文献   

13.
针对等离子旋转电极工艺制备的FGH96合金粉末,采用俄歇电子能谱对合金粉末的颗粒表面进行成分分析,并利用透射电镜对预热处理后粉末中的碳化物演变进行研究。结果表明:FGH96合金粉末的颗粒表面明显存在O、C和Ti元素的偏聚,原始合金粉末的颗粒表面由O和C原子吸附层和富含Ti元素的碳氧化物层组成;经过预热处理,颗粒中形成于快速凝固过程中的MC′亚稳碳化物转变成稳定的MC碳化物,并析出M23C6碳化物,明显改善了颗粒内碳化物的稳定性和分布状态。  相似文献   

14.
针对API X80管线钢在生产实际中遇到的落锤性能较低的问题进行了分析。结果表明,该管线钢在落锤撕裂试样断口处存在大量的异常球形析出物,这些析出物为Mo、Ti、Ni等合金元素的碳化物,尺寸约为几个微米,不但削弱了这些合金元素在钢中的弥散强化作用,而且降低了管线钢的落锤撕裂性能。结合热处理实验,探讨了这些异常长大碳化物的生成机理,即钢板的冷却速度影响碳的扩散,并最终对碳化物的形成产生决定性的作用。减少析出物较好的办法是终轧后空冷至碳化物形成温区的上限附近,然后再强制水冷,保证钢板快速通过碳化物形成区间,从而抑制碳化物的异常长大行为。  相似文献   

15.
一、前言本文根据国内外资料综述了球墨铸铁的氮化组织。介绍了氮化温度、氮化时间、氮势、基体组织、硅及合金元素对球铁氮化物层、扩散层的硬度、厚度的影响。列举了球铁氮化后的疲劳强度及耐磨性的有关数据。以前,在铁系合金中,氮化处理的材料仅限下含有Al、Cr、Ti等形成稳定氮化物的元素的氮化钢、铬钼钢、不锈钢等,对不含上述元素的碳钢及铸铁,用氮化提高其表面硬度是较困难的。与钢比较,铸铁氮化有  相似文献   

16.
通过对铸态、热轧态、固溶态等不同初始组织状态的Cu4Mn6合金进行自腐蚀去合金化制备纳米多孔铜块体材料,研究了合金初始组织对去合金化过程、孔形成和孔微观结构的影响。采用XRD、SEM、EDS等分析了样品腐蚀前后的相组成、微观形貌和元素含量。结果表明,合金初始组织对去合金化过程和孔结构具有重要的影响,固溶态合金是制备成分纯净、结构均匀的纳米多孔金属的最佳前驱体。铸态和热轧态合金由于Cu元素分布不均,构成贫铜区和富铜区,不利于去合金化过程的进行,腐蚀后形成由纳米孔伴有微米孔的双级孔径结构,而固溶态合金由于其初始组织成分均匀,利于Mn元素的选择性溶解和Cu元素的重组,完成去合金化所需时间最短,Mn残留量最低,去合金化后可形成孔径均匀的三维连通纳米多孔结构。  相似文献   

17.
通过对有无NiCrAlY涂层镍基单晶合金进行不同温度的恒温氧化动力学曲线测定及组织结构观察,研究了纳米晶NiCrAlY涂层对高Cr单晶镍基合金高温氧化行为的影响。结果表明:在高温氧化期间,无涂层试样发生明显的氧化、内氧化和内氮化,在表层为Al2O3、Cr2O3的混合氧化物,在次表层氧化物中富含元素Ta,而元素Al贫化,并在近基体区域存在内氧化物;随氧化温度升高,元素Al的贫化区尺寸增大,其中,富Ta相可抑制基体中元素Al向外扩散,延缓合金的氧化速率。合金在氧化初期增重迅速,而恒温氧化增重动力学曲线呈现起伏波动的原因,归结于表面氧化膜的形成与剥落。高Cr单晶合金经溅射NiCrAlY纳米晶涂层,可有效改善合金的抗氧化性能;有涂层试样在不同温度的恒温氧化动力学曲线仅在氧化初期有轻微增重而后趋于平稳,其形成的Al2O3氧化膜不发生明显的剥落,仅在基体近涂层/基体界面区域存在少量AlN内氮化物。  相似文献   

18.
对新型第3代粉末高温合金母合金、等离子体旋转电极法生产(PREP)粉末和热等静压态合金中的微量元素Hf,Zr和Ta的存在相进行了研究。结果表明:母合金中微量元素Hf,Zr和Ta主要以一次MC型碳化物存在,呈块状、条状和蝶状分布于枝晶间;原始粉末中碳化物大致可分为两类:一类为富Ti,Ta和Nb,另一类为含有Ta,Hf和Zr,两类碳化物均含有一定量非碳化物形成元素Co和Ni及弱碳化物形成元素Cr和Mo,以块状、粒状分布于枝晶间或胞晶间。另外,热等静压态分析表明,微量元素Hf,Ta和Zr主要以晶内和晶界MC型碳化物存在,说明微量元素Hf,Zr和Ta以MC型碳化物存在并具有一定遗传性的特点。与原始粉末相比,热等静压态γ′相和碳化物中的Ta量比较少。  相似文献   

19.
高合金模具和工具钢一般会有大量的碳(大于2%)及强烈碳化物形成元素,如Co,V,Mo,W等。这种材料通常有高的耐磨性。由于这些元素能形成强碳化物,因此,这类钢很硬而且耐磨。然而,这些钢的热处理相当复杂。热处理主要的方法是均匀化然后  相似文献   

20.
本文利用真空炉中钎焊的方法,采用Ni-Cr合金钎料,适当控制钎焊温度,保温时间和冷却速度,实现了镀钛金刚石与钢基体的高强度连接.并用深腐蚀处理钎焊后的试样,使金刚石脱离基体,用扫描电镜,X-射线能谱,对金刚石表面的碳化物进行了分析,剖析了Ni-Cr合金与镀钛金刚石的接口微区结构.结果表明:在钎焊过程中,钎料在金刚石表面形成富铬层并与金刚石表面的C元素反应生成Cr7C,和Cr3C2,其中Cr7C3呈笋状生长,Cr3C2呈片状生长,而Ti却并没有在表面形成碳化物.这主要是因为Ti元素与Ni的结合力大于Ti与C的结合力,因此,实现Ni-Cr合金与镀钛金刚石高强度冶金结合的,是活性钎料中的Cr元素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号