首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
合成了6(?(2H?四唑?5?基)?氨基)?1,2,4,5?四嗪?3(2H)?酮(TATzO)并通过红外光谱、元素分析、核磁和单晶X射线衍射对其结构进行了表征。单晶结构表明,TATzO·H_2O属于正交晶系,空间群是Pnma,密度为1.730 g·cm~(-3)。在非等温条件下,利用差示扫描量热法(DSC)和热重(TG?DTG)研究了TATzO的热分解行为并计算得到分解峰温、活化能(E)、指前因子(A)、热点火温度(Tbe)和热爆炸临界温度(Tbp),分别为230.46℃、169.03 kJ·mol~(-1)、15.65 s-1、213.75℃和223.03℃。TATzO·H_2O分解峰温和热爆炸临界温度与传统含能材料RDX相近,表明TATzO热稳定性较高。通过高斯03软件包设计等键反应计算生成焓(HOF),由Kamlet?Jacobs(K?J)方程计算爆速(D)和爆压(p)以评估爆轰性能。D和p分别为7757 m·s~(-1)和25.74 GPa。落锤法测得TATzO撞击感度大于24 J。  相似文献   

2.
用差示扫描量热法(DSC),微量热仪和热重-微分热重分析(TG/DTG)研究了1-氨基-2-硝基胍(ANQ)的热分解行为、比热容和绝热至爆时间.结果表明,ANQ的热行为分为相连的两个剧烈放热分解过程.5 ℃·rmin-1下两个分解过程的峰温分别为192.5℃和196.2℃,总共的分解焓为-2075 J·g-1.第一分解阶段的表观活化能和指前因子分别为224.3 kJ·mol-1和1023.15 s-1.自加速分解温度和热爆炸临界温度分别为184.5℃和192.7℃.298.15 K时摩尔比热容为145.5 J·mol-1·K-1.估算的绝热至爆时间约为60 s,表明ANQ的热稳定性良好.  相似文献   

3.
合成了三种基于 3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-s-四嗪(BTATz)的含能离子盐:二甲胺盐(DMAB),1,3-丙二胺盐(PDAB)和1,4-丁二铵盐(BDAB).用IR,1H NMR,13C NMR和元素分析表征了DMAB、PDAB和BDAB的结构.采用X-射线单晶衍射测定了PDAB的晶体结构.计算了PDAB的爆速(D)和爆压(p).用DSC和TG-DTG研究了DMAB、PDAB和BDAB的热分解行为.计算了自加速分解温度(TSADT),热爆炸临界温度 (Tb),热点火温度(TTIT)及绝热至爆时间(tTIAD).结果表明,PDAB晶体属于单斜晶系,C2/c 空间群,晶胞参数:a=2.2699(10) nm,b=0.5098(2) nm,c=1.6449(6) nm,β=93.045(15) °,V=1.9008(13) nm3,Dc=1.504 g·cm-3,Z=4,F(000)=912,μ=0.127 mm-1,R1=0.0673,wR2=0.2002.PDAB的爆速和爆压分别为8862.09 m·s-1和32.15 GPa.DMAB、PDAB和BDAB的TSADT值分别为576.87,511.90,521.55 K,显示DMAB的热稳定性优于PDAB和BDAB.DMAB、PDAB和BDAB均可作为潜在的含能材料且DMAB的性能优于PDAB和BDAB.  相似文献   

4.
用差示扫描量热法(DSC),微量热仪和热重-微分热重分析(TG/DTG)研究了1-氨基-2-硝基胍(ANQ)的热分解行为、比热容和绝热至爆时间。结果表明,ANQ的热行为分为相连的两个剧烈放热分解过程。5℃·min-1下两个分解过程的峰温分别为192.5℃和196.2℃,总共的分解焓为-2075J·g~(-1)。第一分解阶段的表观活化能和指前因子分别为224.3kJ·mol~(-1)和1023.15 s~(-1)。自加速分解温度和热爆炸临界温度分别为184.5℃和192.7℃。298.15K时摩尔比热容为145.5J·mol~(-1)·K~(-1)。估算的绝热至爆时间约为60s,表明ANQ的热稳定性良好。  相似文献   

5.
以4-氨基-1,2,4-三唑-5-酮(ATO)为原料,通过高锰酸钾氧化制备了一种新型高能有机铵盐4,4'-偶氮-1H-1,2,4-三唑-5-酮铵盐(AZTO·H2O)。用差示扫描量热法研究了其的热行为。用Kissinger法和Ozaw a法计算了其非等温热分解反应的动力学参数。结果表明,其分解热、表观活化能和指前因子分别为247.46 k J·mol-1、177.80 k J·mol-1和1015.74s-1。其热爆炸临界温度和298.15 K下的摩尔热容分别为233.1℃和271.45 J·mol-1·K-1。它的绝热至爆炸时间为72.8~74.7 s。描述AZTO·H2O放热分解反应的动力学方程为:dα/d T=1015.74/β×4(1-α)[-ln(1-α)]3/4 exp(-1.774×105/RT)。  相似文献   

6.
用2-偕二硝甲基-5-硝基四唑(HDNMNT)为原料,与羟胺中和反应,合成了2-偕二硝甲基-5-硝基四唑羟胺盐(HADNMNT),收率为98.4%。用FTIR,1H NMR,13C NMR,15N NMR和元素分析表征了其结构。用DSC研究了HADNMNT的热稳定性。用密度泛函理论及K-J方程计算了HADNMNT的爆速和爆压。在标准状态下(压强为6.86 MPa,膨胀比为70/1),采用最小自由能原理计算了HADNMNT单元推进剂的理论比冲。结果表明,升温速率为10℃·min-1的HADNMNT的DSC曲线的峰温为145.3℃。它的爆速、爆压和比冲分别为9.240 km·s-1,39.54 GPa和2639.8 N·s·kg-1。  相似文献   

7.
0℃下,用发烟硝酸(98%)/乙酸酐(体积比10∶8)体系对N,N′-二(氟偕二硝基乙基)-3,4-二氨基呋咱(LLM-208)进行硝化,由LLM-208得到硝胺化合物N,N′-二(氟偕二硝基乙基)-3,4-二硝胺呋咱(LLM-209)。在无水甲醇中挥发培养,获得LLM-209的单晶,用X射线单晶衍射仪测试了其单晶结构。通过热重及差示扫描量热仪(TG-DSC)研究了LLM-209的热分解性能,用热重-红外联用仪测试了其气态分解产物,用EXPLO5(V6.02)程序预估了其爆速和爆压,用感度测试仪测试了其撞击感度和摩擦感度。结果表明,LLM-209属于单斜晶系,空间群P2_1/n,298 K下的晶体密度为1.94 g·cm~(-3)。LLM-209有一个熔化吸热峰(94.27℃)和两个明显的分解放热峰(179.96℃和233.86℃)。LLM-209的气态分解产物主要为NO_2、CO_2、CO和N_2O。LLM-209的理论爆速和爆压分别为8981 km·s~(-1)和40.3 GPa。LLM-209的撞击感度和摩擦感度分别为4 J和48 N。  相似文献   

8.
利用DSC和TG-DTG法研究了Cu(NH3)2(FOX-7)2的热分解行为。第一放热分解过程的非等温分解动力学方程为dα=dT1015.124α3/4exp(-1.429×105/RT)。Cu(NH.5℃和156.2℃。利用β3)2(FOX-7)2的自加速分解温度和热爆炸临界温度分别为145微量热法研究了Cu(NH3)2(FOX-7)2的比热容,25℃时的摩尔热容为447.3 J·mol-1·K-1。同时估算了Cu(NH3)2(FOX-7)2的绝热至爆时间大约为9.5 s。Cu(NH3)2(FOX-7)2的热稳定性远低于母体化合物FOX-7。  相似文献   

9.
为进一步评估亚甲基二硝基胍(BNGM)的热稳定性,采用差示扫描量热法(DSC),微量热仪,热重‐微分热重分析(TG/DTG)和撞击实验,研究了BNGM的热分解行为、比热容、绝热至爆时间,并测试了其撞击感度。结果表明:BNGM的热行为分为两个放热分解过程,10℃·min~(-1)下两个分解过程的峰温分别为208.1℃和292.5℃,其自加速分解温度和热爆炸临界温度分别为189.6℃和190.9℃,298.15 K时摩尔热容为251.9 J·mol~(-1)·K~(-1),估算绝热至爆时间约为280 s,撞击感度大于23.5 J,表明BNGM热稳定性良好。  相似文献   

10.
李杰  张国杰  马卿  唐水花  范桂娟 《含能材料》2018,26(11):945-950
以1,5?二氨基四唑?1H、氟偕二硝基乙醇为原料,在常温下通过曼尼希反应一步合成了N?(氟偕二硝基乙基)?1,5?二氨基四唑?1H。采用X?射线单晶衍射分析表征了其单晶结构,表明其属于斜方晶系,空间群Pca2_1,173 K下的晶体密度为1.77 g·cm~(-3);采用Hirshfeld表面对晶体中各种作用进行了分析,晶体内占主导地位的分子间相互作用及其分布为(R为比例缩写):R_(O···H/H···O)=27.0%,R_(N···H/H···N)=21.5%,R_(F···O/O···F/F···H/H···F/N···F/F···N)=15.9%,主要为氢键及卤键作用;采用热重及差示扫描量热分析(TG?DSC)研究了其热稳定性,5℃·min~(-1)升温速率下,只有一个尖锐的分解峰温177.32℃,质量损失为92.53%,化合物分解较完全;用Kissinger法与Ozawa法分别计算了其活化能E_K=213.228 k J·mol~(-1),E_O=209.984 k J·mol~(-1)。采用场发射?扫描电镜(FE?SEM)观察了产物的微观形貌,其具有类似空间网状的多孔结构。  相似文献   

11.
黄晓川  郭涛  王子俊  刘敏  秦明娜  邱少君 《含能材料》2016,24(12):1178-1182
以1,1'-二氨基-2,2'-二硝基乙烯(FOX-7)为原料,经浓硝酸硝化及有机溶剂萃取得到高氧平衡化合物——四硝基乙酰胺酸(TNAA)。对比了四种有机萃取溶剂(二氯甲烷、氯仿、四氯化碳和乙酸乙酯)所得TNAA的收率及纯度。采用DSC和TG研究了TNAA的热行为。结果表明,确定二氯甲烷为最佳萃取溶剂,其收率为95.0%,纯度为99.4%。升温速率10 K·min~(-1)下,TNAA熔化吸热峰的初始温度、峰值温度分别为84.8℃和87.8℃,熔融焓为61.7 J·g~(-1);分解放热峰的初始温度、峰值温度分别为117.7℃和131.4℃,分解热为934.8 J·g~(-1)。采用Kissinger方法得到的TNAA的热分解反应活化能E为124.7 k J·mol~(-1),指前因子A为10~(16.1)s~(-1)。自加速分解温度T_(SADT)为102.3℃、热爆炸临界温度T_b为112.2℃、T=Tp时TNAA热分解反应的热力学参数ΔH~≠、ΔS~≠以及ΔG~≠,分别为121.5 k J·mol~(-1)、61.2 J·K~(-1)·mol~(-1)和98.0 k J·mol~(-1)。  相似文献   

12.
以5,5'-联四唑~(-1),1'-二羟基二水合物(BTO)、1,2,4-三氮唑为原料合成了一种新的5,5'-联四唑~(-1),1'-二氧~(-1),2,4-三氮唑(T2BTO)含能离子盐。采用X-射线单晶衍射、FT-IR、1H NMR、13C NMR和元素分析表征了其结构。采用差示扫描量热法(DSC)和热重-微分热重(TG-DTG)研究了其热行为。用Kissinger法和Ozawa法分别计算了其热分解动力学参数(活化能Ea、EO、指前因子A)。采用WL~(-1)型撞击感度测试仪测定了其特性落高H50。用Kamlet-Jacobs经验公式计算了其爆速(D)和爆压(p)。结果表明,该晶体属于单斜晶系,C2/c空间群,晶体学参数为a=15.2410(12),b=10.5185(8),c=7.7546(7),V=1221.26(18)~3,D_c=1.688g·cm~(-3),Z=8。在10 K·min~(-1)的DSC曲线上,其分解峰值温度为519.9 K,TG曲线上只存在一个失重阶段,该阶段位于453.2~523.2 K,失重为90.8%,显示其有较好的热稳定性。E_K=144.39 k J·mol~(-1),E_O=145.52 k J·mol~(-1),ln(A/s~(-1))=32.99,H5061.0 cm,D=7579 m·s~(-1),p=24.49 GPa。  相似文献   

13.
曾天  韩雪  陈湘  张聪  郭兆琦  马海霞 《含能材料》2018,26(10):856-863
为寻求性能良好的不对称1,2,4,5-四嗪类含能化合物,合成了3-[(对硝基苯基)亚甲基腙]-6-(3,5-二甲基吡唑)-S-四嗪(DPHX)和3-[(2,4-二硝基苯基)亚甲基腙]-6-(3,5-二甲基吡唑)-S-四嗪(DMHT)并培养出单晶,通过元素分析、红外以及X-射线单晶衍射对其结构进行表征。运用差示扫描量热仪(DSC)研究了DPHX和DMHT的热分解行为和热分解动力学,并由Kissinger法计算得到其表观活化能。利用热分解动力学的研究结果对DPHX和DMHT的热安全性进行了研究。结果表明,二者均为单斜晶系,空间群为P21/c,两种化合物表观活化能分别为176.20 kJ·mol~(-1)和229.29 kJ·mol~(-1)。DPHX的自加速分解温度(TSADT)为191.83℃,热点火温度(Tbe)为206.20℃,热爆炸临界温度(Tbp)为213.78℃,DMHT的TSADT为203.91℃,Tbe为212.24℃,Tbp为218.34℃。因此,DMHT较DPHX热稳定好,热安全性高。  相似文献   

14.
以3?氨基?4(?叔丁基?NNO?氧化偶氮基)呋咱(ABAo F)为原料,经重氮化开环、肟化、氧化、氨化和硝化环化五步反应得到目标化合物1?羟基?1,2,3?三唑并[4,5?e]?5,7?二氧化?1,2,3,4?四嗪(HTTDO),总收率24.1%,采用红外光谱、核磁共振、质谱及元素分析对中间体及产物的结构进行了表征;探讨了氨化及硝化环化的反应机理;培养了HTTDO·4.5H2O的单晶,X射线衍射分析表明,其为正斜方晶系,空间群为Pna2(1),晶体密度为1.659 g·cm~(-3);利用Gaussian 09程序和Kamlet?Jacobs方程计算HTTDO理论密度为1.88 g·cm~(-3),爆速为9393 m·s-1,爆压为41.9 GPa,爆热为8010 J·g~(-1);采用差示扫描量热(DSC)研究了HTTDO的热性能:其在热分解过程中,放热剧烈,峰温最高达194.5℃。  相似文献   

15.
合成了三种基于3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-s-四嗪(BTATz)的含能离子盐:二甲胺盐(DMAB),1,3-丙二胺盐(PDAB)和1,4-丁二铵盐(BDAB)。用IR,~1H NMR,~(13)C NMR和元素分析表征了DMAB、PDAB和BDAB的结构。采用X-射线单晶衍射测定了PDAB的晶体结构。计算了PDAB的爆速(D)和爆压(p)。用DSC和TG-DTG研究了DMAB、PDAB和BDAB的热分解行为。计算了自加速分解温度(T_(SADT)),热爆炸临界温度(T_b),热点火温度(T_(TIT))及绝热至爆时间(t_(TIAD))。结果表明,PDAB晶体属于单斜晶系,C2/c空间群,晶胞参数:a=2.2699(10)nm,b=0.5098(2)nm,c=1.6449(6)nm,β=93.045(15)°,V=1.9008(13)nm3,Dc=1.504 g·cm~(-3),Z=4,F(000)=912,μ=0.127 mm~(-1),R_1=0.0673,wR _2=0.2002。PDAB的爆速和爆压分别为8862.09 m·s~(-1)和32.15 GPa。DMAB、PDAB和BDAB的TSADT值分别为576.87,511.90,521.55 K,显示DMAB的热稳定性优于PDAB和BDAB。DMAB、PDAB和BDAB均可作为潜在的含能材料且DMAB的性能优于PDAB和BDAB。  相似文献   

16.
借助不同加热速率(β)的非等温DSC曲线离开基线的初始温度(To)、onset温度(Te)和峰顶温度(Tp),采用Kissinger法和Ozawa法求得热分解反应表观活化能(Ek和Eo)和指前因子(AK),Hu-Zhao-Gao方程求得beO(or pO),Zhao-Hu-Gao方程求得aeo(or pO),微热量法确定的比热容(Cp),以及密度(ρ)、热导率(λ)和分解热(Qd,取爆热之半)数据;根据Zhang-Hu-Xie-Li公式、HuYang-Liang-Xie公式、Hu-Zhao-Gao公式、Zha0-Hu-Gao公式、热力学关系式、Smith方程、Friedman公式、Bruckman-GuilIet公式、Frank-Kamenetskii公式和Wang-Du公式和Yoshida公式,计算了1,1'-二甲基-5,5'-偶氮四唑一水合物(1,1'-DMATZ)和2,2'-二甲基-5,5'-偶氮四唑(2,2'-DMATZ)在β→0时的To、Te和Tp值(Too、Teo和Tpo)、分解反应的活化热力学参量(△G≠、△H≠、△S≠)、热爆炸临界温度(Tbe和Tbp)、绝热至爆时间(tTlad)、撞击感度50%落高(H50)、热点起爆临界温度(Tcr,.hoto-spot)、热爆炸临界环境温度(Tacr)、热安全度(Sd)、热爆炸概率(PTE)、爆炸能力(Ep)和以间二硝基苯为基准的撞击敏感性(Ss).结果表明,(1)1,1'-DMATZ对热是稳定的;(2)1,1'-DMATZ对热的抵抗能力好于2,2'-DMATZ;(3)影响二甲基-偶氮四唑热安全的主要因素是甲基在分子中所处的位置.  相似文献   

17.
黄海丰  杨军  杨普  李晓强  李慧  俞艳 《含能材料》2014,22(4):462-466
以二氯乙二肟为起始原料,通过一锅法合成了四水合1,1'-二羟基-5,5'-联四唑钠盐(SBTD·4H2O),并用红外、元素分析、扫描电子显微镜对其进行了表征,测试了目标化合物的单晶结构,结果表明其属于三斜晶系,P-1空间群,晶胞参数为a=5.6440(11),b=6.4476(17),c=8.303(11),α=100.131(5)°,β=96.789(3)°,γ=112.157(3)°,V=1,Dc=1.761 g·cm-3,F(000)=146,μ(Mo Kα)=0.227 mm-1。采用热重-差示扫描量热联用(TG-DSC)对其进行了热行为分析,在加热速率为10 K·min-1的条件下,该化合物从83.9℃开始失去结晶水,368.1℃开始分解,分解峰值温度为398.6℃,热稳定性良好。依据GJB772A-1997对SBT D·4H2O的感度进行了测试,撞击感度H50100 cm,摩擦感度为0%,这表明其对机械撞击和摩擦不敏感。  相似文献   

18.
以3,5-二氯哒嗪为原料,经过取代、氧化、硝化、氨解四步反应分别合成3,5-二氨基-4,6-二硝基氧化哒嗪(DADNPO)和未见文献报道的3,5-二氨基-4-硝基氧化哒嗪(DANPO),并采用红外光谱、1H NMR、13C NMR及元素分析对中间体及产物结构进行了表征;探究了硝化反应条件对硝化产物及收率的影响,确定制备3,5-二甲氧基-4,6-二硝基氧化哒嗪较佳条件为:硝硫混酸作为硝化试剂,反应温度50~55℃,反应时间为15 h。利用Gaussian 09程序和Kamlet-Jacobs方程计算DADNPO和DANPO的爆速分别为8.486 km·s^-1和7.224 km·s^-1,爆压分别为30.2 GPa和23.09 GPa。采用差示扫描量热(DSC)研究了这两种化合物的热性能,结果表明,DADNPO、DANPO放热分解峰温分别为244.4°C和325.2°C,DANPO的热稳定性更好。  相似文献   

19.
采用热重-微商热重法(TG-DTG)研究了聚5-乙烯基四唑的热行为,利用微量热法和理论计算方法研究了聚5-乙烯基四唑的比热容,并计算了其绝热至爆时间。结果表明,聚5-乙烯基四唑的热分解过程主要发生在第二阶段,热分解反应动力学方程为:dα/dt=(10~(21.03)/β)(3/2)(1-α)[-ln(1-α)]1/3exp(-2.292×105/RT),热爆炸临界温度为588.63K,计算获得了聚5-乙烯基四唑的绝热至爆时间为251.4s。  相似文献   

20.
张至斌  杨婷  尹磊  殷昕  张建国 《含能材料》2017,25(3):209-214
以1,1′-二羟基-5,5′-联四唑(BTO)为起始原料合成新型含能材料——1,1′-二羟基-5,5′-联四唑铷(BTORb)。用X-射线单晶衍射仪测定其晶体结构,结果表明Rb~+与BTO形成8配位结构,不同片层的BTO与Rb~+交替排列相互连接,构成三维网状结构。用差示扫描量热分析技术(DSC)和热重分析技术(TG-DTG)研究其热分解行为,其热分解温度起始于292℃,表明其热稳定性良好。用Kissinger法和Ozawa法计算其非等温反应动力学参数,得到其热分解Arrhenius方程为lnk=13.51-186.3×10~3/RT。计算得到其标准生成焓Δ_fH_(298)~θ为274.91 k J·mol~(-1)。计算其热爆炸临界温度T_b为356.7℃,表明其热安定性较好。800 g落锤下,BTORb的撞击感度H_(50)为34.8 cm,70°摆角、1.23 MPa条件下,其摩擦感度爆炸百分数为36%,静电火花感度50%发火能量为0.34 J。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号