首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
利用Gleeble-3500热模拟试验机,在温度为300~420℃、应变速率为0.000 5~0.500 0 s~(-1)条件下对AZ80+0.4%Ce变形镁合金进行热模拟实验,研究该合金的高温流变行为。用ZIESS PL-A662数码光学显微镜分析温度与应变速率对合金显微组织演化规律的影响。结果表明:应变速率一定时,流变应力随温度的升高逐渐降低;变形温度一定时,合金的流变应力随应变速率的增大而升高。合金的显微组织演化过程为变形温度较低时,存在大量未结晶的粗大晶粒,动态再结晶进行不完全,温度升高后,动态再结晶进行较完全;动态再结晶晶粒尺寸随应变速率的增加而减小。最后,以经典的Arrhenius本构关系模型为基础,采用线性回归方法建立AZ80+0.4%Ce变形镁合金的流变应力本构模型,对比峰值应力的实验值与计算值,平均相对误差仅为6.00%。  相似文献   

2.
在应变速率为0.001~5 s~(-1)、变形温度为440~600℃条件下,在Geeble-1500D热模拟试验机上对Al-0.2Sc-0.04Zr(质量分数/%)变形铝合金开展单向热压缩试验,研究其高温流变行为。结果表明:流变应力随变形温度的减小和应变速率的增加而增大,应力曲线经历线性-硬化阶段、抛物线-动态回复阶段、完全动态再结晶-稳态变形阶段;压缩变形后试样中间部位的组织呈条带状,晶粒沿垂直于压缩方向被压扁和拉长,再结晶晶粒尺寸随变形温度的升高和应变速率的减小而增大;建立的Z参数-Arrhenius型本构方程对Al-0.2Sc-0.04Zr合金峰值应力的预测平均相对误差率仅为7.428%;该合金较高的热变形激活能(642.575 kJ/mol)和应变指数(13.810 5)与第二相粒子Al3(Sc,Zr)有关。  相似文献   

3.
TC11合金β相区大应变热变形行为及组织研究   总被引:6,自引:0,他引:6  
利用热模拟试验机,在温度为1020~1080℃和应变速率为0.001~70 s~(-1)范围内对TC11合金进行真应变为1.2的大应变等温恒应变速率压缩试验,获悉高温塑性流动的应力-应变关系曲线特征,并对变形前后的微观组织进行观察。结果表明:流动应力随应变速率升高和温度降低而增加,但前者比后者对流动应力的影响更为显著;在所研究的温度范围内,当应变速率大于10.0 s~(-1)时,变形组织主要为拉长的β晶粒;当应变速率在1.0~0.01 s~(-1)之间时,变形试样分别发生部分动态再结晶和完全动态再结晶;当应变速率为0.001 s~(-1)时,变形试样以动态回复为主。为获得良好的变形组织,热加工区域以温度在1020~1050℃,应变速率在0.01~1.0 s~(-1)范围为宜。  相似文献   

4.
借助万能材料试验机、光学显微镜和扫描电镜,研究软取向AZ80+0.4%Ce镁合金挤压板材在变形温度为300~420℃、应变速率为0.000 5~0.5 s-1条件下的热拉伸变形行为。结果表明:随温度的升高流变应力逐渐下降,晶体内孪晶逐渐消失,动态再结晶增强;随应变速率的增加流变应力增大,晶粒尺寸减小。由断口分析可知:随着温度的升高、应变速率的降低,韧窝数量逐渐变少且深度变得越来越深,合金表现出较好的塑性变形行为。根据Arrhenius本构关系模型,建立AZ80+0.4%Ce镁合金的流变应力本构模型,峰值应力的试验值与计算值的相对误差仅为5.793%。  相似文献   

5.
某新型粉末高温合金的高温变形与动态再结晶   总被引:1,自引:0,他引:1  
运用Gleeble-1500 热模拟机,对热等静压态的某新型粉末高温合金进行了形变温度在1120-1170℃和应变速率在2×10-3-2×10-1s-1下的高温变形与动态再结晶行为研究。研究表明:该合金在高温变形时应力-应变曲线上峰值应力σp与温度T和应变速率ε之间符合下式关系:Z=ε·exp(Qa/RT)=A2σpn。在一定的变形条件下,通过高温变形过程中的动态再结晶能获得细晶组织,其动态再结晶晶粒平均尺寸与Zener-Hollomon参数呈双对数线性关系。  相似文献   

6.
AZ61B镁合金热模拟挤压变形的研究   总被引:5,自引:0,他引:5  
采用Gleeble-1500D热模拟机,对AZ61B镁合金在温度为623K和673K,应变速率为0.01,0.1、1 s-1时,应变量为50%的高温塑性变形行为,以及热模拟后镁合金组织的变化进行了研究。分析了流变应力与应变速率和温度的关系,计算出了应力指数和变形激活能,结果表明:流变应力随应变速率的增加而增加,随应变温度的增加而减小;镁合金发生了动态再结晶,有大量细小等轴晶出现,探明了变形软化的主要机制是动态再结晶。  相似文献   

7.
为研究Mg-13Gd-4Y-2Zn-0.5Zr合金热压缩过程中的动态再结晶规律,在变形温度为350~500℃、应变速率为0.001~1.000 s-1条件下,采用Gleeble3500对合金进行压缩实验,通过XRD和金相显微镜对变形后的合金组织进行分析。结果表明:合金经过均匀化,主要相组成为Mg基体以及析出相W相(Mg3Y2Zn3)、I相(Mg3YZn6)和长程有序相(Mg12YZn),且变形过程中长程有序相保留下来;Mg-13Gd-4Y-2Zn-0.5Zr合金热压缩曲线为典型的动态再结晶型,且峰值应力随应变速率的降低和温度的升高而减小;随着应变速率的增加和温度的升高,动态再结晶由晶界扩展到晶内,且组织成分达到均匀。  相似文献   

8.
基于等温恒应变速率压缩变形试验研究具有典型动态回复和动态再结晶变化特征的Al-12Zn-2.4Mg-1.2Cu合金的应力-应变曲线,采用加工硬化率和3次多项式拟合相结合的方法,获得试验合金的临界应力/峰值应力、临界应变/峰值应变的比值分别为0.488~0.918和0.195~0.913。随着变形温度升高和应变速率减小,发生动态再结晶的临界应力呈下降趋势;随着应变速率增加和温度降低,发生动态再结晶的临界应变速率呈增大趋势。  相似文献   

9.
研究马氏体时效钢的热变形问题具有理论意义。在变形温度为900~1 050 ℃,应变速率为0.001~1 s-1,最大真应变为1.2的条件下,利用Gleeble-3800热模拟试验机研究18Ni(1 700 MPa)马氏体时效钢的热压缩变形行为,建立该合金的热加工图,并对组织演变规律进行研究。结果表明:在实验条件下,随变形温度的升高和应变速率的降低,合金的流变应力和峰值应变逐渐减小,而能量耗散率(η)逐渐升高,动态再结晶过程进行更充分;当应变量为0.6,流动失稳区面积最小。确定了18Ni马氏体时效钢的完全再结晶区域。  相似文献   

10.
用铸态Ti-5.5Al-3.0Nb-3.0Zr-1.2Mo合金为基材,在Gleeble-3800D热模拟测试机上高温压缩测试,变形温度为750~900℃,变形速率为0.001~1 s-1,总变形比例为75%。结果表明:应变提高,铸态合金加工硬化明显,流变应力呈直线增大;到达峰值应力后,组织开始软化,在软化与硬化过程达动态平衡时,获得稳定流变。处于低变形温度下,动态软化受应变率影响最明显,合金软化受变形温度与应变率共同作用。升温至850℃,存在动态再结晶现象,表现为动态回复。以较低应变率变形时,促进动态再结晶的快速完成,α相可促进动态再结晶转变。提高应变率后,合金中的β相软化机制由动态再结晶转变成局部塑性流变。  相似文献   

11.
用Gleeble-1500D热模拟压缩试验对7050铝合金高温流变和动态再结晶行为进行研究。结果表明:综合考虑温度和应变速率对动态再结晶的影响,得到动态再结晶峰值应变方程εp=0.015427×ε0.06081·exp(15319/RT),峰值应变与临界应变的关系εc=0.72εp,从而为有限元数值模拟和热加工工艺提供理论和数据参考。  相似文献   

12.
利用Gleeble-3800热模拟机对TC4钛合金在550~800 ℃温区进行热变形试验研究。通过真应力、真应变分析得到TC4钛合金峰值应力随温度升高而降低、应变速率增大而升高,确定了550~800 ℃温区热变形激活能、建立了流变应力本构关系以及峰值应力与温度和变形速率之间的函数关系。通过热变形模拟为TC4钛合金热加工参数的合理制定与控制提供依据。  相似文献   

13.
镁合金动态再结晶的研究现状   总被引:1,自引:0,他引:1  
动态再结晶对镁合金的影响已受到广泛关注。阐述变形温度、变形速率、变形程度以及稀土元素等因素对镁合金动态再结晶的影响,综述镁合金动态再结晶的5种再结晶机制。对镁合金动态再结晶的研究方向进行了展望。  相似文献   

14.
镁合金温变形后的组织与性能   总被引:2,自引:0,他引:2  
研究了镁合金(Mg-3Al-lZn)铸棒在不同变形温度和变形程度下的组织演变过程和再结晶行为,并对不同变形条件下试样进行拉伸试验。结果表明:通过挤压变形及动态再结晶,可以显著的细化镁合金的晶粒,其晶粒尺寸可由铸态的约100μm减少到5μm;随变形温度的升高,合金的抗拉强度下降,到一定温度后,趋于稳定;在相同的变形程度下,随着变形温度的升高,晶粒有长大的趋势。  相似文献   

15.
金属材料在塑性变形过程中存在多尺度效应,而多尺度建模仿真是研究多尺度效应的一种有效方法。基于动态再结晶热黏塑性本构理论,对WSTi3515S阻燃钛合金的拉伸变形行为进行仿真模拟,建立相应的多尺度模型,研究变形过程中材料的宏观力学响应和微观应力分布。结果表明:宏观拉伸模拟获得的应力-应变曲线与试验结果吻合;多晶集合模型体积单元,其整体响应与宏观试样微区的行为吻合较好;在变形过程中,应力-应变分布均从中心区向四周扩展,且在高温低应变速率下,应力-应变分布更均匀;随着应变增大,变形局部化由于应力的相互牵制而松弛,应力集中被有效缓解,使变形持续进行,从而获得较好的塑性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号