首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
王润文  杨春明  刘建 《含能材料》2022,30(12):1226-1236
含能化合物的设计效率决取于多方面因素,如筛选空间中潜在高性能样本的占比和关键性能的准确预测方法。本研究提出预筛选分子骨架提升虚拟筛选空间整体性能的方案,并将高通量计算与深度学习相结合用于含能化合物设计。研究发现,含能分子的晶体密度与其骨架密度之间存在中度的正相关性,通过预筛选高密度分子骨架可以有效提升虚拟筛选空间的整体密度。研究基于晶体学数据库CCDC提供的含能晶体密度数据集,采用深度学习方法获得含能晶体的密度预测模型,具有可靠的精度和泛化性。在此基础上,以稠环类含能化合物为研究对象,通过骨架预筛选获得高密度的稠环分子骨架,从而通过分子片段组装获得由潜在的高密度分子组成的虚拟筛选空间。研究采用量子化学计算和爆轰产物状态方程等方法实现了生成焓、爆轰性能和化学稳定性的预测,从而由性能排序筛选出能量水平优于RDX,稳定性优于TNT的新型含能分子6个。研究表明,分子骨架预筛选可以有效提升虚拟筛选空间的总体性能,在此基础上借助高通量计算与深度学习可实现含能分子的高效设计。  相似文献   

2.
黄鑫  张朝阳 《含能材料》2023,31(10):1059-1067
高精度计算水平下的量子化学数据对于含能化合物的设计、合成以及表征具有重要意义。因此,建立含能化合物量子化学数据库,收集含能化合物在高精度计算水平下的量子化学数据,既能够避免重复性的计算研究与资源消耗,也保证了数据质量以便进行深入分析及知识挖掘,进而获得可靠的含能化合物结构与性质的分析预测模型。本文总结并梳理近年来量子化学计算所获得的含能化合物关键性结构和性质数据种类、数据库与高通量虚拟筛选相结合的含能化合物分子设计进展;并从量子化学计算标准与数据模型的选择、数据库以及数据库管理系统的开发等角度,对含能化合物量子化学计算数据库的设计与应用进行了展望,包括:(1)明确基准计算方法与性质预测模型以产生本领域专用性的数据;(2)建立开放共享的数据库以实现与高通量虚拟筛选相结合;(3)开发数据库管理系统以实现查询、获取与知识挖掘,以期为含能化合物量子化学数据库的设计及实际应用提供有益的参考。  相似文献   

3.
密度是决定含能材料爆轰性能的重要参数。为评估现有CHON类含能材料密度的计算方法,对等电子密度面法、分子表面静电势法、基团加和法、晶体堆积法、定量构效关系法、经验公式法等进行分析和归类。结果表明,基于分子体积预测方法的精度取决于分子间和分子内相互作用对密度影响描述的准确度。其中,准确描述氢键和van der Waals作用充满了挑战性。基于晶体体积计算密度的核心在于晶体结构的准确预测,结构搜索要面对巨大的状态空间和高度复杂的能量曲面的困难,预测效率是亟待解决的问题。体积加和法和经验公式法存在无法区分同分异构体和晶型的缺点,且对新发现的具有特殊结构的分子由于缺乏实验数据难以获得准确的经验参数,计算结果偏差较大。引入人工神经网络、遗传算法以及支持向量机等机器学习算法后,定量构效关系法在含能化合物性能与结构关系研究中取得很大成就,模型精度进一步提高将为基于材料基因组模式的含能材料设计研发奠定基础,这也是今后密度预测方法发展的主要方向。  相似文献   

4.
刘锐  刘建  唐岳川  张朝阳  黄静  黄鑫 《含能材料》2024,32(4):408-421
含能分子研发面临多重挑战,传统“试错法”效率低下,计算机辅助分子设计的出现改变了研发模式。本综述回顾了含能分子设计的发展历程,介绍了计算机辅助含能分子设计的研究现状,并概述了人工智能技术(AI)在性质预测、分子生成、合成路线和反应条件预测等多个设计环节的最新进展,讨论了当前含能分子设计模式与其他材料设计方法的差距,思考差距产生的原因,并对未来AI辅助含能分子设计的发展方向提出展望。研究发现,AI在含能分子性能预测和分子生成等方面已经有了应用,但在合成路径规划和反应条件优化等环节的应用仍有待进一步探索,应用前景巨大。通过数据增强、迁移学习或高通量计算有望能够解决含能分子数据薄弱的问题;加强AI辅助含能分子合成路线与反应条件探索有望贯通“设计→评估→制备→验证”全流程自动化分子设计模式。AI辅助含能分子设计为提升含能分子设计水平提供新的可能性,有助提升含能分子研发效率。  相似文献   

5.
呋咱醚含能化合物研究进展   总被引:3,自引:3,他引:0  
呋咱醚含能化合物是一类重要的含能材料,具有熔点较低、能量较高、塑性强的优点。从20世纪90年代起始,该类含能化合物已成为含能材料研究领域重要方向之一。本文综述了对称与非对称呋咱醚含能化合物的醚化合成方法,全面介绍了典型含能化合物FOF-1、FOF-2、FOF-11以及FOF-13的合成、性能及应用研究进展。设计出11种未见文献报道的呋咱醚含能化合物结构,并采用半经验计算方法 PM3进行了物化与爆轰性能预估,其中2种呋咱醚含能化合物密度大于1.90 g·cm-3、爆速大于9000 m·s-1。  相似文献   

6.
为了寻找新型高能量密度材料,设计了四硝基吡咯及其甲基、氨基、硝基衍生物。在DFT-B3LYP/6~(-3)1G*水平下对模型化合物进行了几何结构全优化。在DFT-B3LYP/6~(-3)11++G**水平计算了模型化合物的生成焓、爆轰性能。自然键轨道(NBO)分析了模型化合物引发键的强度进而考察了其热安全性。计算结果表明:1-甲基四硝基吡咯密度为1.88 g·cm~(~(-3)),爆速和爆压分别为8.66 km·s~(-1)和34.10 GPa,其爆轰性能具有与1,3,5-三硝基~(-1),3,5-三氮杂环己烷(RDX)相当的爆轰性能;四硝基吡咯、1-氨基四硝基吡咯密度分别为1.93 g·cm~(-3)和2.04 g·cm~(-3),爆速均为9.01 km·s~(-1),爆压分别为37.54 GPa和38.73 GPa,具有与1,3,5,7-四硝基~(-1),3,5,7-四氮杂环辛烷(HMX)相当的爆轰性能;由于五硝基吡咯中含有五个硝基,其热安全性最差,N(5)—NO2键离解能仅为60.8 k J·mol~(-1)。计算值与之前的实验值具有较好的一致性,表明计算值可靠。  相似文献   

7.
高能化合物生成热的半经验分子轨道研究   总被引:3,自引:3,他引:0  
用半经验分子轨道(MO)PM3、AM1、MNDO和MINDO/3方法对66种高能化合物进行几何全优化SCF计算,探讨了诸方法计算生成热(ΔH1)与实验值的关系。结果表明,PM3计算生成热与实验值之间存在良好的线性关系,对已有实验值的35个标题物,线性方程为ΔHf.EXP=-4.98 1.03ΔHf,cal,相关系数为R=0.976,均方根偏差为37.53,以此线性方程预测了高能化合物的生成热。AM1计算生成热较PM3结果差,而MNDO和MINDO/3方法则不适合于此类化合物生成热的计算。即在各种半经验MO方法中,以PM3法最适合预测高能化合物的生成热。  相似文献   

8.
含能材料理论设计中的几个问题(英)   总被引:1,自引:1,他引:0  
舒远杰  李华荣  熊鹰  周阳  钱文 《含能材料》2013,21(2):166-172
理论方法在新型含能材料的设计和研发中起到非常重要的作用。本研究介绍了含能材料理论设计中所遇到的问题,如从微观上估算含能化合物的密度、生成热、稳定性及爆轰性能等。并讨论了含能聚合物界观参数的计算方法:1) 基于优化的分子结构,求得含能金属配合物分子周围的电子云包覆体积,然后由公式求得包覆密度作为其晶体密度近似值; 2) 含能化合物的生成热根据原子化方案,进行数值计算; 3) 以五种小分子氮氢化合物和六种四嗪化合物的热分解机理为例,阐述采用将从头算分子动力学(ab initio MD)和从头算分子轨道理论(ab intio MO)结合起来研究含能化合物热分解机理的可靠性; 4) 含能材料的爆轰性能, 基于各个元素的Lennard-Jones势参数等,由反应物及产物的VLW状态方程,进行数值求解; 5) 采用DPD方法可用于研究含能聚合物的界面性质。上述性能的计算可为新型含能材料的探寻提供有价值的信息。   相似文献   

9.
为了在同一水平上比较含能五唑离子盐的密度、生成热、爆速和爆压,采用密度泛函理论,对近两年合成的五大类16个非金属N_5~ˉ离子盐进行了研究。结果表明在MP2/6-311++G(d,p)理论水平上,根据Born-Haber能量循环计算的五唑离子盐的生成热为95.2~1362.0 k J·mol~(-1),三唑类N_5~ˉ离子盐的平均生成热最高。这些五唑离子盐的密度为1.395~1.650 g·cm~(-3)(298.15 K),远远低于理论预测的全氮化合物的密度。通过Kamlet-Jacobs公式计算的爆速和爆压结果与EXPLO5的计算结果吻合良好,大部分五唑含能离子盐的爆速为6500~8000 m·s~(-1);爆压为15~26 GPa,低于RDX的爆速和爆压。N_5~ˉ的缩二胍盐、羟胺盐和肼盐的理论爆轰性能突出,它们的爆速(8622~9032 m·s~(-1))与RDX持平或者略高,爆压(29.5~32.3 GPa)均低于RDX,并未展现出全氮阴离子衍生物的明显优势,也远未达到对它们超高能量的预期。  相似文献   

10.
概述了量子化学基础理论,详细综述了含能材料关键参数(密度、生成热、爆热、爆速、爆压和撞击感度)的计算方法,并比较这些方法的特点和适用范围。介绍了CHEET A、EXPLO5等计算软件在含能材料领域的应用。最后,为满足新一代材料高能稳定与绿色环保的综合要求,设计了20种新型高氮含能分子,运用上述量子化学方法估算了其物化和含能性质,并提出了新型含能化合物的设计原则:(1)高氮分子骨架;(2)零氧平衡;(3)基团调节修饰,以期促进含能材料的发展。附参考文献76篇。  相似文献   

11.
为建立适用于含能材料的精密燃烧热测量系统和方法,基于示差热流量热原理,使用由960对热电偶组成的三维热电堆作为核心测量元件,使用苯甲酸标准物质对装置进行标定,研制出一种基于三维热电传感技术的微小药量含能材料燃烧热测定方法和装置,并利用该燃烧热测定装置对环四亚甲基四硝胺、六硝基六氮杂异伍兹烷、环三亚甲基三硝胺、3,4-二硝基呋咱基氧化呋咱、二氨基二硝基乙烯和硝基胍6种典型含能材料的燃烧热进行了测定。实验结果表明,仪器量热系数为(64.804±0.071) μV·mW-1,标定的相对不确定度为0.109%;6种含能材料在298.15 K时的固相标准摩尔燃烧热(ΔcU)依次为-(2749.1±4.5),-(3593.6±6.0), -(2115.2±3.4),-(3040.8±4.8),-(1211.4±2.3) kJ·mol-1和-(898.4±2.0) kJ·mol-1,测定结果与文献报道值能够较好吻合,表明所研制的微小药量燃烧测定装置能够广泛应用于含C、H、O、N物质,尤其是珍稀样品及易爆炸物质燃烧热的测定。  相似文献   

12.
由原子化反应法求算高能化合物的生成热   总被引:2,自引:2,他引:0  
基于DFT-B3LYP/6-31G*及HF/6-31G*水平的理论计算结果,借助原子化反应及严格的物理化学公式,对49种已有实验值的高能化合物的生成热进行了计算。与实验值的关联比较表明B3LYP/6-31G*水平的计算结果(x)与实验值(y)之间存在良好的线性关系;对49个标题物,线性方程为y=-75.79 0.98x,相关系数R=0.990,标准偏差SD=28.21。以此线性方法预测了高能化合物的生成热,所得结果与实验值偏差较小,表明B3LYP/6-31G*结合原子化反应是兼顾适用性和可靠性的计算高能化合物生成热的较好方法。基于HF/6-31G*水平的原子化反应法不适于计算高能化合物的生成热。  相似文献   

13.
基团加和法估算含能热塑性聚氨酯弹性体的生成焓   总被引:4,自引:3,他引:1       下载免费PDF全文
吕勇  罗运军  葛震 《含能材料》2009,17(2):131-136
采用基团加和法估算了以聚叠氮缩水甘油醚(GAP)、聚硝酸酯缩水甘油醚(PGN)、聚2,2-双叠氮甲基氧杂环丁烷(PBAMO)、聚2-甲基-2-硝酸酯基氧杂环丁烷(PNIMMO)、2,2-双叠氮甲基氧杂环丁烷(BAMO)2-叠氮甲基2-甲基氧杂环丁烷(AMMO)共聚物(PBAMO/AMMO)等为软段,以二苯基甲烷二异氰酸酯、甲苯二异氰酸酯、异氟尔酮二异氰酸酯等为硬段,1,4-丁二醇为扩链剂的含能热塑性聚氨酯弹性体(ETPE)的生成焓.结果表明,随着硬段含量的增加,ETPE的生成焓降低,当硬段为MDI时,所制备的ETPE的生成焓高于其他硬段聚合物,叠氮化合物为软段的ETPE生成焓高于硝酸酯类化合物的.故通过对ETPE的能量预估和结构推断可以为设计具有高能量水平的ETPE提供依据.  相似文献   

14.
为了加快新型含能材料研发的进度,减少因大量实验而带来的时间和资源的消耗问题,基于材料基因工程理论提出一种含能材料生成焓的预测方法.首先将搜集到的代表含能材料分子结构的原子坐标数据转换成表示分子内笛卡尔坐标系的库仑矩阵,以消除含能材料分子结构因平移、旋转、交换索引顺序等操作对生成焓预测造成的影响;然后,根据提出的基于Attention机制的卷积神经网络(Convolutional Neural Network,CNN)和双向长短期记忆网络(Bi-directional Long Short-term Memory Network,Bi-LSTM)的融合模型对含能材料的生成焓进行预测.这样,既可以有效提取数据的特征,又能充分考虑数据间的相关性,同时还能够突出重要特征对预测结果的影响.对比实验结果表明,提出的基于深度学习的方法在生成焓的预测上拥有最低的实验误差,其平均绝对误差(Mean Absolute Error,MAE)、平均绝对百分误差(Mean Absolute Percentage Error,MAPE)、均方根误差(Root Mean Square Error,RMSE)和均方根对数误差(Root Mean Squared Logarithmic Error,RMSLE)分别为0.0374、1.32%、0.0541和0.028,实现了"结构—性能"的预测目标,为含能材料生成焓的预测提供了一种新方法.  相似文献   

15.
测得了二氨基呋咱(DAF),二硝基呋咱(DNF)及二氨基偶氮呋咱(DAAzF)的燃烧能和比热容.三种化合物的燃烧能分别为(-1 3043±1 19),(-6863±37)和(12661±54)J·g-1,同时,计算得到了基于不同燃烧产物的标准摩尔生成焓(△fH(o)m).三种化合物298.15 K时的标准摩尔热容分别为(140.8±0.1),(236.8±0.2),(216.9±0.2)J·mol-1·K-1.燃烧能随着分子中氧含量的增加而减少(DAF>DAAzF>DNF).氨基基团有助于提高燃烧能,硝基则有负作用.对于比热容而言,三种化合物的变化规律与燃烧能相反.  相似文献   

16.
含硼富燃料推进剂各组分对其低压燃速的影响   总被引:14,自引:0,他引:14  
采用推进剂静态燃速测试仪和氧弹式量热器的试验方法,研究了各组分对含硼富燃料推进剂低压燃速和爆热的影响。结果表明:增加高氯酸铵(AP)含量、添加燃速催化剂、增加超细AP的含量,可以提高该推进剂的低压燃速;硼含量的增加可以提高推进剂的爆热,但燃速略有降低。热分析的结果表明:增加含硼富燃料推进剂的凝相放热是提高其低压燃速的主要原因。  相似文献   

17.
18.
含能配位化合物(Energy Coordination Compound,ECC)具有不同金属元素与配体之间配位方式多样化的特点,预期可获得性能可调控的含能材料,因此成为近十几年来的研究热点之一.本文综述了不同配体组装ECC的方式和类型,ECC及其功能材料在作为起爆药、推进剂催化剂、铝热剂的可燃剂和氧化剂、烟火着色剂方...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号