首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 105 毫秒
1.
考虑到风速时间序列非平稳特性和时序关联难以建模的问题,提出一种基于变分模态分解和深度门控循环网络的风速短期预测模型。该模型首先使用变分模态分解非递归地将原始风速序列分解为预先设定层数的子分量,以期降低原始序列的不平稳度,使用深度门控网络分别对各子分量建模预测,最后叠加各分量的预测结果,得到风速的预测结果。实例研究表明所提模型能够有效地跟踪风速的变化,具有较高的短期预测精度。  相似文献   

2.
为提高短期风速的预测精度,提出一种基于双模式分解、双通道卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的组合预测模型以提高预测精度。首先,对经过PAM方法聚类后的风速时间序列利用奇异谱分解(SSD)和变分模态分解(VMD)2种信号分解方法进行分解,获得2类多尺度分量。不同模式的多尺度分量可降低原始风速的复杂度和非平稳性,实现不同模式模态分量规律的互补;其次,将2种分解方法得到的风速子序列合并为一个矩阵,输入到双通道CNN进行波形特征深度提取;最后,采用LSTM建立历史风速时序的时间依赖关系,在时空相关性分析的基础上得到最终风速预测结果。实验结果表明,基于双模式分解-双通道CNN-LSTM的组合预测模型可有效提高风速短期预测的精度。  相似文献   

3.
针对风速时间序列复杂的非线性特征,根据C-C算法确定重构参数(嵌入维数及延迟时间)并对风速重构相空间,建立径向基函数神经网络(RBF网络)及Volterra自适应预测模型对风速时间序列进行预测,以Lorenz方程数值解为例验证了两种预测方法的可行性。结果表明:RBF神经网络模型和Volterra自适应预测模型都能对实测风速时间序列进行较为准确的预测,预测误差分别在0.3和0.1 m/s内;Volterra自适应预测模型预测结果总体较RBF神经网络模型预测精度更高,且随着预测时间的增大,预测误差呈增大趋势,这与混沌存在初值敏感性的特征相符。  相似文献   

4.
针对风速具有强非线性的特点,提出一种奇异谱分析和改进粒子群优化自适应模糊推理系统的短期风速预测模型。该方法采用奇异谱分析将原始序列分解为趋势和谐波分量,对各分量分别建立模糊神经网络模型,最后将各分量预测结果叠加得到预测风速值。为提高预测精度,改用改进粒子群算法对自适应模糊推理系统的隶属度函数进行优化。以河北某风电场实测数据进行仿真并与传统的神经网络对比分析,结果表明将风速重构后分别预测再叠加降低了原始问题的复杂度,同时提高了预测精度,在不同时间间隔的风速序列预测中该模型显著降低了多步实时预测中的误差。  相似文献   

5.
为提高短期风速预测的准确性,提出一种基于PAM聚类、奇异谱分解(SSD)和LSTM神经网络的组合预测模型来预测短期风速,以解决上述问题。首先,为提高神经网络的学习效率,采用PAM算法对原始风速数据进行相似日聚类;其次,SSD具有抑制模态混叠和虚假分量产生的优点,使用SSD分解风速序列,提取多尺度规律;最后,由于LSTM神经网络捕捉长时间依赖的序列的波动规律的能力较强,使用LSTM神经网络对分解后的风速分量进行预测,将各分量预测值叠加得到最终预测结果。实验结果表明,基于PAM-SSD-LSTM的组合预测模型可有效提高风速短期预测的准确率。  相似文献   

6.
针对风电具有较强的随机性和波动性,传统的单一预测方法难以准确描述其规律且预测精度较低的问题,提出风速熵和功率熵的概念,在时间序列法的基础上分别采用基于风速和基于功率的预测方法,并根据风速熵和功率熵的计算结果动态设置预测点的权值,建立风电功率的熵权时序模型。算例分析结果表明,所提方法能有效提取风速及功率历史数据中的有用信息,提高超短期风电功率预测精度,预测结果的准确率和合格率均优于神经网络法、时间序列法和基于风速法。  相似文献   

7.
为提高风速序列预测精度,提出一种基于两步分解的短期风速组合预测模型,首先使用鲁棒经验模态分解(REMD)将风速数据分解为不同频率的子序列,然后将REMD分解得到的高频模态分量使用小波包分解(WPD)进行第二步分解,降低风速序列不稳定性,提高其可预测性。其次对分解得到的高频子序列建立长短期记忆神经网络(LSTM)预测模型,低频子序列建立差分自回归移动平均模型(ARIMA)预测模型。最后叠加子序列预测结果得到风速预测结果。通过两组不同风速数据集的实验对该模型的性能进行科学评估,模型预测结果的平均绝对误差分别为0.3026、0.1255;均方根误差分别为0.498、0.1607。与其他几种对比预测模型相比,验证该模型具有一定的优越性。  相似文献   

8.
采用正则化极限学习机的短期风速预测   总被引:1,自引:0,他引:1  
摘要: 高效、准确的风速预测是风电场功率预测的基础,对风力发电控制和风电场并网运行等具有重要意义。针对风速时间序列具有强烈的非线性和波动性,且难以精准预测的特点,提出一种基于正则化极限学习机(regularized extreme learning machine,RELM)的风电场短期风速预测新方法。首先,采用自相关函数(ACF)对风速时间序列的相关性进行分析,得到预测模型输入属性集合;其次,确定预测网络的输入、输出等参数,并建立RELM模型;再次,利用训练集在训练过程中确定网络参数,构建RELM预测模型;最后,以RELM预测模型开展短期风速预测,得出预测结果。采用美国风能技术中心的实测风电场风速数据开展实验证明,相对于标准的ELM和BP神经网络,新方法具有更好的预测精度。  相似文献   

9.
风速预测对风电场控制和电网调度具有十分重要的意义。文章以不同时间间隔的测风数据为基础,采用时间序列法和人工神经网络法对风速进行预测,通过比较风速预测绝对平均误差,说明时间间隔较短时,采用BP神经网络预测精度较高;当时间间隔增大时,采用时间序列法预测精度较高;时间间隔过大,即风速数据太少时,两种预测方法误差都较大,须谨慎使用。该研究结果对风电机组控制系统的设计以及电网调度计划的制定具有参考价值。  相似文献   

10.
介绍了基于AdaBoost的多神经网络集成预测方法。集成方法的预测结果优于其他方法的预测结果,这一点在理论上和经验上已经得到证明。AdaBoost是适用于时间序列预测的集成方法。基于AdaBoost算法,采用多个BP神经网络训练随机生成的风速样本,再由多个训练结果生成最终的风速预测值。用该方法预测的误差低于用单一BP神经网络进行的预测,其分析和仿真结果表明了其优越性。  相似文献   

11.
准确的秒级风速实时预测能够提高风电机组的运行状况和控制品质,为电网做出最优调度决策提供辅助信息。目前风速实时预测时间分辨率通常为分钟级,且在小数据集的情况下模型泛化能力弱。文章以时间分辨率为5 s的风速序列为研究对象,提出了基于多任务学习的风速实时预测方法。该方法结合了变分模态分解方法和长短期记忆神经网络。首先,通过变分模态将风速序列分解为一系列信号;然后,建立多任务学习的共享层,使用长短期记忆神经网络提取各分解信号中的共享参数,深度挖掘分享子序列预测任务间的信息;最后,建立多任务学习的特定任务层,借助多个LSTM并行预测分解后的风速子序列,并将多个预测结果叠加得到风速实时预测结果。算例结果表明:所提多任务学习模型在10步、5步预测中的均方根误差总体均值分别为0.80 m/s和0.71 m/s,与经过变分模态分解和未经过变分模态分解的单任务模型预测相比,所提模型均方根误差总体均值在10步预测中分别降低了35.5%和39.8%,在5步预测中分别降低了24.5%和45.8%。  相似文献   

12.
基于小波变换与Elman神经网络的短期风速组合预测   总被引:1,自引:0,他引:1  
风速的准确预测对风电场发电系统的经济和安全运行有着重要的作用。为了克服风速随机性强的缺点,提高短期风速预测的精度,提出了一种将小波变换与Elman神经网络相结合的短期风速组合预测模型。该模型由小波预处理模块和神经网络预测模块组成。首先利用小波预处理模块将风速序列作多尺度分解,重构得到不同频段的子序列,然后利用Elman神经网络模块分别对其训练和预测。实际风速预测结果表明,与单一的Elman和ARMA法相比,该组合预测模型的预测精度有较大的改善,可以用于风电场短期风速的预测。  相似文献   

13.
风电场风速预测模型研究   总被引:3,自引:3,他引:0  
介绍了两种风电场风速预测模型,分别是BP神经网络模型和小波-BP神经网络组合模型。BP神经网络模型是风速预测中常用的模型之一,小波技术和BP神经网络结合,即为组合模型。小波技术将风速时间序列按时间和频率两个方向展开,体现了各成分对预测值贡献率的不同。将BP神经网络模型和小波-BP神经网络组合模型分别应用到我国朱日和风电场的逐时风速预测中,从预测结果对比得出组合模型更适合该风电场的逐时风速预测。  相似文献   

14.
针对现有太阳辐照度短期预测方法的建模复杂、准确度低等问题,提出一种基于深度学习的GRU-RF动态权值组合预测方法。大气因素与太阳辐照度数据融合,将运算速度较快且模型复杂度较低的随机森林(RF)模型与带有时序记忆的门控循环单元(GRU)神经网络进行动态权值的加权集成,分别将地表接收到的太阳辐照度、近地层气温、相对湿度、近地层风速和相对气压等变化特征进行预测研究。通过几种模型对比分析,结果表明使用GRU-RF模型预测短时(9 h)太阳辐照度结果较好,运行速度较快,在不同时间间隔(5、10以及15 min)下能够很好地预测太阳辐照度数据。  相似文献   

15.
刘极 《水电能源科学》2020,38(8):153-157
随着风力发电的广泛应用,对风力机健康状态进行准确监测的重要性日益凸显,为此提出了一种基于风力机功率预测的健康状态监测方法,即结合多项式模型和自回归模型特点,考虑风速与风力机输出功率之间的相关性和滞后性,利用改进非线性自回归模型对某风场风力机输出功率进行预测,并将预测结果与传统灰色模型、BP神经网络模型预测结果进行对比,计算与实测数据之间的误差。最后,选取功率预测系数中变化较为稳定的系数项作为观测系数,通过标准残差法确定异常观测系数反推风力机健康状态。分析结果表明,改进非线性自回归模型预测值与实测数据较为接近,趋势较为吻合。相比于传统灰色模型、BP神经网络模型,改进非线性自回归模型预测误差较小,精度较高。可见通过分析功率预测系数变化能够及时发现风力机健康状态变化,为故障发现提供参考。  相似文献   

16.
熊伟  程加堂  艾莉 《水电能源科学》2013,31(10):247-249
为提高风电场短期风速的预测精度,引入一种基于改进蚁群算法优化神经网络的非线性组合预测方法,按误差平方和最小原则对所建灰色GM(1,1)模型、BP网络和RBF网络三种单一预测数据进行非线性组合,并将其结果作为最终预测值。仿真结果表明,该方法的平均绝对误差及均方误差分别为17.76%和3.68%,均小于单一模型、线性组合模型及神经网络组合模型的预测结果,提高了网络的泛化能力,降低了预测风险,为风电场风速预测提供了一种新途径。  相似文献   

17.
针对大坝变形监测中存在的大量小样本时间序列所具有的强非线性特性,引入组合建模的思想,综合应用ARIMA时间序列模型和BP神经网络模型实现了小样本大坝变形监测数据序列的分析,即先利用ARIMA时间序列模型对大坝变形监测数据进行拟合和预测,然后依据时间序列残差建立BP神经网络模型对残差进行预测,最后将两者结合以获得大坝变形的预测。实例分析表明,ARIMA-BP组合模型较单一模型的预测精度高,预测值更接近实测值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号