首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
通过模拟和实验的方法研究在湍流工况下(3 000Re10 000)换热器管内插入不同扭带模型后的传热特性和阻力特性。区别于传统螺旋扭带,提出一种顺时针与逆时针交替扭转的正反扭带。对不同扭率的传统扭带以及扭率为3的无缺口和半圆缺口正反转扭带进行模拟计算,并将模拟结果与实验结果进行对比验证。结果表明:在湍流流态下,雷诺数越小,扭带的强化换热效果表现越好;对不同扭率的扭带,其努塞尔数、摩擦系数和综合性能指标随扭率的减小而增大;扭率为3时,两种正反扭带的强化换热效果均优于传统扭带,无缺口正反扭带的换热效果最好;模拟计算的结果数据与实验结果数据比较,最大误差不超过8%。  相似文献   

2.
本文提出将一种正反扭转且带有双排半圆切口的新型扭带用在套管式换热器上在层流条件下对换热器其换热性能和流动特性进行实验研究并分析这种扭带的综合性能。实验工质为水,Re(雷诺数)变化范围为540~1 440。本实验采用4种不同长度扭带做对比,4种分别是全长、3/4长、半长和1/4长扭带。结果显示,插入全长、3/4长、半长和1/4长扭带的换热Nu(努塞尔数)分别是光管的1.92~3.80,1.69~3.20,1.60~2.62和1.48~2.23倍;f(摩擦阻力系数)分别是光管的3.69~6.30,3.30~5.51,2.72~4.67,2.33~3.55倍;对应的PEC(综合性能指标)分别为1.24~2.06,1.14~1.81,1.15~1.57和1.11~1.47。插入全长扭带在实验范围内达到了最优,插入其它长度扭带的PEC也都高于1,可以应用在压力较小的工况下。最后,本文还对该类型扭带拟合了实验关联式,通过对比实验值和预测值,Nu和f的误差均在10%以内,这为今后的研究提供了理论依据。  相似文献   

3.
为了研究管内插入扭带对换热的影响,建立了余隙率分别为0.1,0.15,0.2,0.25,0.3的内置扭带换热管流体流动的三维物理模型,采用RNGk-ε湍流模型对这几种余隙率的扭带换热管的流动和传热特性进行了数值模拟,分析了插入不同余隙率扭带换热管的换热效果和流动阻力。结果表明,Nu数和摩擦阻力系数均随着余隙率的增大而减小,在低Re数的时候内置扭带有明显的经济性,特别是余隙率为0.1的扭带换热管综合性能最高,强化传热效果最为明显。  相似文献   

4.
本研究以导热油为工质,在层流和过渡流(Re7 000)范围内研究横纹槽管内插三种不同规格的断续扭带和同扭率(Y=4.13)连续扭带的流动与强化换热特性。将实验数据进行回归分析得到了阻力系数和Nu的实验关联式,为复合强化传热的计算提供了理论依据。研究表明:横纹槽管内插扭带的综合换热性能优于内插相同扭带的光管,横纹槽管内插长度为66 mm的断续扭带的综合换热性能要优于同条件下内插连续扭带的光管。实验结果可为换热器的改造和新型换热器的设计提供理论依据。  相似文献   

5.
《可再生能源》2017,(6):833-840
文章使用欧拉多相流模型对插入扭带后的DSG吸热管的汽水动力学特性进行数值模拟。该数值模型充分考虑了DSG吸热管表面上非均匀热流密度的影响。基于此,文章分析了当吸热管内两相区插入扭带后,管内的汽水两相分布情况、壁面温度以及壁面温度梯度等。研究结果表明:y=4扭带扰乱了吸热管内的分层流型,这使得吸热管内蒸汽分布更为均匀;插入y=4扭带使得DSG吸热管管壁周向温度与温度梯度相对减小,吸热管周向壁面的最大温差减少33.3%;插入y=4扭带使得吸热管周向角度θ=120°处的壁面径向温差减少35.9%,径向最大温度梯度减少74.1%,壁面温度分布更加均匀。  相似文献   

6.
光管内插入扭带传热与流动阻力的试验研究   总被引:3,自引:1,他引:2  
张华  周强泰 《节能技术》2005,23(2):122-125
为了研究管内强化换热技术,对三根不同结构参数的扭带插入光管的换热特性和流体动力学特性进行了试验研究。试验以空气为工质,Re在8000~10^5之间,管外被水冷却。对大量实验数据用多元线性回归法得到了具有较高精度的扭带管的传热系数和摩擦系数的统计关联式,分析了扭带管的传热与流阻性能,为换热器的设计及改造提供了理论依据。  相似文献   

7.
韩继广  吴新  周翼  詹岳 《热能动力工程》2012,27(4):434-438,514,515
实验研究了以空气为工质的管内插入扭带与螺旋线圈的传热与阻力特性,在3000相似文献   

8.
为了研究纳米流体在内置扭带外螺纹管内的流动与传热特性,在Re(雷诺数)为2 000~12 000的范围内,分别对质量分数为0.1%、0.2%、0.3%、0.4%、0.5%和0.6%的Cu、Al、A1_2O3、Fe_2O_3、多壁碳纳米管和石墨纳米流体在内置扭带外螺纹管内的流动与对流换热特性进行了实验研究。实验结果表明:在相同Re下不同纳米流体都存在最佳浓度比0.5%,其中Cu-水纳米流体的换热性能最好但是摩擦阻力较大,石墨的换热性能和摩擦阻力方面的综合性能最好。内置扭带外螺纹管较光管在换热性能方面提高了50.32%,但摩擦阻力系数也相应增加。根据实验数据对热性能系数进行了综合分析,得到了石墨纳米流体内置扭带外螺纹管对流换热以及摩擦阻力系数关联式,其计算值和实验值有较好的吻合度。  相似文献   

9.
管内插物强化换热性能分析及应用   总被引:4,自引:0,他引:4  
杨俊兰  马一太 《动力工程》2004,24(3):388-392
管内插物的种类很多,扭带、螺旋线圈以及绕花丝是三种较常用的管内插物强化换热技术,对它们的强化换热性能以及应用进行分析比较,是非常有必要的。从综合强化性能来看,螺旋线圈内插物比扭带内插物效果好;绕花丝内插物是一种新型综合强化换热技术,它优于前两种内插物的特点是:可使流体在流动方向上做复杂的三维混合流动,并且所产生的阻力降非常小,所以综合强化换热性能最好。图7表1参10  相似文献   

10.
圆管内置扭带能大大强化管内传热,利用周期边界对规则间隙扭带的6种结构形式采用CFD方法进行了研究,比较了各结构下管内传热能力Nu、阻力因子f、流动传热增强因子(f/f0、Nu/Nu0)和综合性能η。结果表明:扭带提高了管内流速,使高速区向壁面靠近,形成径向旋流冲刷管壁减薄边界层;规则间隙扭带加速了流体的扰动,使之形成间歇式的混合与分离;内置扭带结构的Nu/Nu0随Re增大成指数规律减小,最小值大于2.5;交替排列正反旋向扭带提升了Nu,但也使f/f0大幅升高,不同结构的f/f0变化规律各异,综合性能表明s=1的内置扭带总体性能最优。根据数值模拟结果拟合出了各结构流动传热关联式。  相似文献   

11.
Experimental investigation of heat transfer, friction factor and thermal performance of thermosyphon solar water heater system fitted with helical twisted tape of various twist ratios has been performed and presented. The helical twisted tape induces swirl flow inside the riser tubes, which increases the heat transfer and pressure drop. The empirical correlations developed for Nusselt number and friction factor with various twist ratios (Y = 3, 4, 5, 6) are fitted with the experimental data with a discrepancy of less than ±4.54% and ±6.13% respectively. The results are compared with a plain tube collector at the same operating conditions. Conclusions made from the results show that heat transfer enhancement in twisted tape collector is higher than the plain tube collector with minimum twist ratio and gradually decreases with increase in twist ratio. The overall thermal performance of twisted tape collector is found to increase with increase in solar intensity.  相似文献   

12.
The effect of peripherally-cut twisted tape with alternate axis (PT-A) on the fluid flow and heat transfer enhancement characteristic in a uniform heat flux circular tube has been experimentally investigated. Experiments were conducted using water as a testing fluid in a turbulent tube where the Reynolds number was varied from 5000 to 20,000. Peripherally-cut twisted tape (PT) and typical twisted tape (TT) were also tested in similar conditions, for comparison. Evidently, the heat transfer rates in the tube fitted with the PT-A, PT and TT are respectively enhanced up to 184%, 102% and 57% of that in the plain tube. In the present Reynolds number range tested, the PT-A, PT and TT offer the maximum thermal performances at constant pumping power of 1.25, 1.11 and 1.02, respectively. In addition, the correlations of the Nusselt number, friction factor and thermal performance were developed for the tube equipped with the PT-A in terms of peripherally-cut tape width ratio (w/W), Reynolds number (Re) and Prandtl number (Pr).  相似文献   

13.
The paper presents a comparative investigation of enhanced heat transfer and pressure loss by insertion of single twisted tape, full-length dual and regularly-spaced dual twisted tapes as swirl generators, in a round tube under axially uniform wall heat flux (UHF) conditions. The investigation encompassed the Reynolds number based on the inlet tube diameter (D) ranging from 4000 to 19,000. The experiments are performed using single twisted tapes and full-length dual twisted tapes with three different twist ratios (y/w = 3.0, 4.0 and 5.0) and also regularly-spaced dual twisted tapes with three different space ratios (s/D = 0.75, 1.5 and 2.25). The effects of major parameters on heat transfer and friction factor are discussed and the results from both single and dual twisted tape inserts are compared with those from the plain tube. The result shows that the heat transfer of the tube with dual twisted tapes is higher than that of the plain tube with/without single twisted tape insert. For both single twisted tape and full-length dual twisted tapes, Nusselt number (Nu) and friction factor (f) tend to increase with decreasing twist ratio (y/w). The average Nusselt number and friction factor in the tube fitted with the full-length dual twisted tapes at y/w = 3.0, 4.0 and 5.0, are respectively 146%, 135% and 128%; and 2.56, 2.17 and 1.95 times of those in the plain tube. For the regularly-spaced dual twisted tapes, the heat transfer rate is decreased with increasing space ratio (s/D). The average Nusselt numbers in the tube fitted with the regularly-spaced dual twisted tapes (s/D) of 0.75, 1.5 and 2.25 are respectively, 140%, 137% and 133% of that in the plain tube. With the similar trend mentioned above, all dual twisted tapes with free spacing yield lower heat transfer enhancement in comparison with the full-length dual twisted tapes (s/D = 0.0).  相似文献   

14.
Experimental investigation of heat transfer and friction factor characteristics in a double pipe heat exchanger fitted with regularly spaced twisted tape elements, were studied. The inner and outer diameters of the inner tube are 50.6 and 25.8 mm, respectively and cold and hot water were used as working fluids in shell side and tube side. The twisted tapes were made of the stainless steel strip with thickness of 1 mm and the length of 1500 mm. They were inserted in the test tube section in two different cases: (1) full-length typical twisted tape at different twisted ratios (y = 6.0 and 8.0), and (2) twisted tape with various free space ratios (S = 1.0, 2.0, and 3.0). The results, obtained from the tube with twisted tape insert, were compared with those without twisted tape. The results show that the heat transfer coefficient increased with twist ratio (y). Whereas the increase in the free space ratio (S) would improve both the heat transfer coefficient and friction factor. The results from each case were correlated for Nusselt number and friction factor. Subsequently, the predicted Nusselt number and friction factor from the correlations were plotted to compare with the experimental data. It was found that Nusselt number was within ± 15% and ± 10% for friction factor.  相似文献   

15.
Experimental investigation of heat transfer, friction factor and thermal performance of thermosyphon solar water heater system fitted with helical and Left–Right twist of twist ratio 3 has been performed and presented. The helical twisted tape induces swirl flow inside the riser tubes unidirectional over the length. But, in Left–Right system the swirl flow is bidirectional which increases the heat transfer and pressure drop when compared to the helical system. The experimental heat transfer and friction factors characteristics are validated with theoretical equations and the deviation falls with in the acceptable limits. The results show that heat transfer enhancement in twisted tape collector is higher than the plain tube collector. Compared to helical and Left–Right twisted tape system of same twist ratio 3, maximum thermal performance is obtained for Left–Right twisted tape collector with increase in solar intensity.  相似文献   

16.
This work aims at studying the effect of twin delta-winged twisted-tape insertion on heat transfer, pressure drop, and thermal performance characteristics of a heat exchanger tube. All twisted tapes used in this work were made of aluminum sheets twisted at a single twist ratio of 3.0. The twin delta wings were formed by extrusion of the tape at the center area at every twist length interval. For comparison, three different arrangements of the twin delta wings were: (1) the wing tips pointing upstream of the flow (TTW-up, twin delta-winged twisted tape in counterflow arrangement), (2) the wing tips pointing downstream of the flow (TTW-down, twin delta-winged twisted tape in co-flow arrangement), and (3) the wing tips pointing opposite direction (TTW-o, opposite winged twisted tape). The wing declination was arranged at an angle of 15° with respect to the tape surface. Effects of three different wing-tip angles of 20°, 40°, and 60° for a constant wing base were examined. The experiments were conducted using water as the test fluid in a uniform-heat-flux tube for Reynolds number between 5000 and 15,000. The results demonstrate that the TTW-up consistently provides greater heat transfer rate, friction factor, and thermal performance factor than the TTW-down and the TTW-o, at a similar condition. In addition, the heat transfer rate increases as the wing-tip angle decreases. Over the range investigated, the TTW-up with wing-tip angle of 20° gives the highest thermal performance factor of 1.26 along with a Nusselt number and friction factor of 2.57 and 8.55 times those of the plain tube.  相似文献   

17.
It is novel and better method that microencapsulated phase change material (MPCM) slurry and the tube with twisted tape inserts are adopted together to enhance convective heat transfer. In this paper, numerical analyses were carried out to study laminar heat transfer and friction characteristics of MPCM slurry in a circular tube with twisted tape inserts. It is found that the MPCM slurry in the tube with twisted tape insert leads to the best performance of convective heat transfer for the bigger apparent specific heat and the intensive swirl flow. Furthermore, the modified average Nusselt number increases with decreasing bulk Stefan number, twisted ratio and increasing Re, while the friction factor increases with increasing Re and decreasing twisted ratio. It is also found that the heat transfer enhanced efficiency increases with increasing Re and decreasing Steb, and the heat transfer enhancement effects of twisted tape for low Steb slurry are better than that for high Steb slurry. Moreover, the thermal-hydraulic performance ratios increase to a peak, then decrease gradually with increasing Re for different twist ratio. The performance ratio increases with decreasing the twist ratio only in a definite Re range, and the Re range decreases with decreasing twist ratio.  相似文献   

18.
In this paper, heat transfer, friction factor and thermal performance behaviors in a tube equipped with the combined devices between the twisted tape (TT) and constant/periodically varying wire coil pitch ratio are experimentally investigated. The periodically varying three coil pitch ratios were arranged into two different forms: (1) D-coil (decreasing coil pitch ratio arrangement) and (2) DI-coil (decreasing/increasing coil pitch ratio arrangement) while the twisted tapes were prepared with two different twist ratios. Each device alone is also tested and the results are subjected for comparison with those from the combined devices. The experiments were conducted in a turbulent flow regime with Reynolds numbers ranging from 4600 to 20,000 using air as the test fluid. Compared to each enhancement device, the heat transfer rate is further augmented by the compound devices. Over the range investigated, the highest thermal performance factor of around 1.25 is found by using DI-coil in common with the TT at lower Reynolds number. In addition, the empirical correlations of the heat transfer (Nu) and pressure drop (f) are also presented.  相似文献   

19.
This paper presents an original experimental study on compound heat transfer enhancement in a tube fitted with serrated twisted tape. The serrations on two sides of the twisted tape with twist ratio of 1.56, 1.88, 2.81 or ∞ are the square-sectioned ribs with the identical rib-pitch and rib-height. The local Nusselt number and Fanning friction factor increase as the twist ratio decreases in the tube fitted with smooth or serrated twisted tape. In the Re range of 5000–25 000, heat transfer augmentation attributed to the serrated twisted tape falls in the range of 250–480% of the plain-tube level. That is about 1.25–1.67 times the heat transfer level in the tube fitted with smooth twisted tape. Fanning friction factors are respectively decreased and increased in the tubes fitted with smooth and serrated twisted tapes as Re increases. Based on the same pumping power consumption, the thermal performances of the tubes with smooth and serrated twisted tapes are compared. A set of empirical correlations that permits the evaluation of the Nusselt number and the Fanning friction factor in the developed flow region for the tubes fitted with smooth and serrated twisted tapes is generated for engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号