首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
根据热力学第一定律和热力学第二定律对某柴油机排气能量进行计算分析。随着转速和负荷的增加,排气能量不断增大,在标定工况排气能量功率达到最大值为176.40 k W,而最大扭矩工况时排气能量功率约为144.80 k W,同时发动机转速和负荷的增加,排气可用能也不断增加,在标定工况点,可用能功率达到最大值约74.19 k W,而最大扭矩工况点的排气可用能功率约61.46 k W。在全工况范围内,理论上利用排气能量可用能最大可以提高发动机热效率6.8%~11.5%。  相似文献   

2.
对在车用增压柴油机增压涡轮后串联动力涡轮以回收利用柴油机排气余热进行了数值仿真研究。计算分析了动力涡轮直径大小对余热回收的影响,以及动力涡轮对柴油机本身性能和增压涡轮的影响。结果表明,动力涡轮的大小对增压柴油机系统影响较大,动力涡轮的选型应使动力涡轮在最大效率点运行时,柴油机和动力涡轮总输出功率最大;动力涡轮转速随动力涡轮直径的增大而降低,选用较大的动力涡轮有利于为其匹配传动装置。串联耦合动力涡轮之后,在柴油机高速时可提高系统总输出功率,降低有效燃油消耗率(BSFC),但在柴油机低速时会使系统性能恶化。建议使用低速旁通装置来限定动力涡轮仅在柴油机的高速区投入运行,以避免低速时柴油机和增压涡轮性能下降,高速时回收利用柴油机排气余热,达到节能的目的。  相似文献   

3.
针对一台车用柴油机全工况范围内排气能量的变化规律,设计了一套有机朗肯循环(organic Rankine cycle,ORC)余热回收系统,进而与车用柴油机耦合形成了车用柴油机-有机朗肯循环联合系统。ORC余热回收系统采用非共沸混合工质R416A,以高效回收柴油机的排气能量。采用螺杆膨胀机作为有机朗肯循环系统的动力输出部件,通过试验测试确定螺杆膨胀机的最优工况点(进气压力1.7MPa、膨胀比8、等熵效率0.65),进而设定有机朗肯循环系统的最优运行参数。研究结果表明:加装有机朗肯循环系统后,与原柴油机相比,车用柴油机-有机朗肯循环联合系统的输出功率最大提升了30.6kW,热效率最大提升了10.99%,余热回收效率最高可达10.61%,有效燃油消耗率最大降低了35g/(kW·h)。  相似文献   

4.
<正> 概况在柴油机燃烧室、活塞、气缸盖、气阀等一些重要部件上采用陶瓷材料巳愈来愈引起人们的重视[2]。由于采用陶瓷材料后,允许的工作温度可显著地提高,从而提高了热效率。此外,由于取消了水冷却系统[10],因而彻底解决了冷却水系统方面所产生的漏水和水质问题[1],同时提高了涡轮增压器所回收的排气能量,使整个柴油机的经济性提高30%(一般而言,车用柴油机有效功占输入能量的35%,排气占36%,冷却水占26%[1])。在功率相同  相似文献   

5.
通过试验和理论研究,得出了一台车用柴油机在全工况范围内可用排气能量的变化规律,据此设计了一套有机朗肯循环余热回收系统,分别采用纯工质R245fa和非共沸混合工质R416A作为系统的工作介质。针对车用柴油机有机朗肯循环联合系统,提出了有用功提升率评价指标。通过数值计算,研究了不同柴油机工况下,有机朗肯循环系统和联合系统工作性能的变化规律,得出了有机工质质量流量与柴油机可用排气能量的对应关系。研究结果表明:随着柴油机转速和转矩的增加,两种工质(纯工质R245fa和非共沸混合工质R416A)的有机朗肯循环系统的净输出功率均逐渐增加,最大值分别为30.39kW和28.03kW;两种工质的车用柴油机有机朗肯循环联合系统的有用功提升率最大分别为9.00%(纯工质R245fa)和9.70%(非共沸混合工质R416A);采用非共沸混合工质R416A的性能优于采用纯工质R245fa。  相似文献   

6.
内燃机车余热分析与利用   总被引:1,自引:0,他引:1  
内燃机车柴油机有效能量利用率不足40%,其余能量都以余热、废热形式被排气和冷却水带走.分析了内燃机车柴油机余热状况,计算了柴油机可利用余热量,并就如何回收利用这部分热量的途径进行了探讨.  相似文献   

7.
何晓红  蔡睿贤  苟晨华 《节能》2008,27(3):16-18,37
简介内燃机冷热电联产系统的发展现状,总结了发电用内燃机在设计点工况下主要参数的现有分布范围:排气温度约为450~600℃,排气流量基本上与额定功率呈线性关系,发电效率一般在33%~45%。对联产系统不同形式的能量输出、联产系统经济效率等进行分析研究,表明联产系统回收的能量主要来自排气和冷却水,排气回收能量一般高于冷却水回收能量。与热电联产系统相比,由于制冷比供热困难,冷热电联产系统的经济效率较高。  相似文献   

8.
针对柴油机在高原环境条件下工作时存在热负荷增大、冷却系统散热能力不足等热平衡问题,利用自行设计的重型电控共轨柴油机高海拔(低气压)热平衡模拟试验系统,开展了不同海拔(大气压力)下柴油机全负荷工况热平衡试验研究,分析了不同海拔(大气压力)对柴油机热流量分配的影响规律。结果表明:随着海拔的升高,转化为有效功的热量和排气带走的热量均不断下降,而冷却液带走的热量和余项损失均不断增加。海拔每升高1km,转化为有效功的热量平均下降了11.1kW(约3.8%),且低转速区下降幅度比高转速区大;排气带走的热量平均下降了13.3kW(约4.6%),且高转速区下降幅度比低转速区大;冷却液带走的热量平均增加了8.0kW(约5.3%);余项损失平均增加了16.4kW(约40.1%)。当海拔超过3km时,热流量分配的变化幅度更加明显。  相似文献   

9.
为解决传统涡轮增压发动机低转速增压不足和高转速排气能量未得到充分利用的问题,提出了可实现压气机和涡轮解耦的机电复合柔性增压系统.针对某重型柴油机建立了机电复合柔性增压系统仿真模型,计算分析了该系统对柴油机性能的影响规律及关键因素.研究表明:该系统在中高转速工况系统综合效率最高可提升2.66%,原因主要在于涡轮发电系统回收利用了废气能量;通过控制涡轮转速可实现全工况最佳涡轮效率,优化后涡轮效率最高可提升1.2%;提高电动压气机功率能显著提升柴油机低速转矩,1 100 r/min工况下转矩最大可提升24%,且系统综合效率和燃油消耗率均得到改善.  相似文献   

10.
燃用含氧燃料对柴油机热量分配影响的试验研究   总被引:2,自引:0,他引:2  
从热平衡分析着手,对柴油机燃用柴油和碳酸二甲脂(DMC)混合燃料后缸内传热规律及热效率和动力性进行了研究.研究结果表明:燃用柴油与DMC混合燃料的热平衡与燃用纯柴油相比有所不同,随着DMC在柴油中添加比例的增加,转化为有效功的比例也逐渐增加,当DMC添加比例为15%~20%时,有效功的比例增加3%左右,而冷却水、排气、机油带走热量的比例均有所下降.  相似文献   

11.
This paper has analyzed the energy and exergy distribution of a 2.3 L turbocharged hydrogen engine by mapping characteristics experiment. The energy loss during fuel energy conversion mainly includes: exhaust energy (23.5–34.7%), cooling medium (coolant and oil) energy (21.3–34.8%), intercooler energy (0.5–3.6%) and uncounted energy (5.8–14.1%), while the proportion of effective work ranges from 25.7% to 35.1%. Results show that all kinds of energies increase with engine speeds and they are not sensitive to the loads. However, the proportions of different kind of energy exhibit different characteristics. Moreover, the turbocharger can increase the brake thermal efficiency and the maximum can be increased by 4.8%. Exergy analysis shows exergy efficiency of the coolant energy does not exceed 5%, while the exergy efficiency of the exhaust energy can reach up to 23%. And the total hydrogen fuel thermal efficiency limit is theoretically above 59%.  相似文献   

12.
Energy and exergy analysis comparison of lauric and stearic acid phase‐change material (PCM)–based energy storage system integrated with engine exhaust have been investigated in the present study, which provides more realistic assessment than the conventional energy analysis. On the basis of thermodynamic laws, energy, exergy, charging efficiencies, and availability of PCM thermal storage with various mass fractions have been investigated at engine full load. The exergy saved for PCMs in the overall system is quantified and were compared. The results revealed a considerable enhancement in energy and exergy efficiency for thermal energy storage with lauric acid PCM due to its enhanced thermophysical properties. Energy and exergy of the storage medium for lauric acid PCM with 0.4 kg mass fraction, increased by 68% and 57.5% compared with stearic acid PCM thermal storage integrated with a diesel engine. Also, energy and exergy efficiency of charging and integrating the system with stearic acid PCM decrease with increase in mass fractions. Thus, lauric acid PCM can be used as thermal storage medium at high temperatures for exhaust heat recovery from engines and also an option for green technology.  相似文献   

13.
The exhaust gas from an internal combustion engine carries away about 30% of the heat of combustion. The energy available in the exit stream of many energy conversion devices goes as waste. The major technical constraint that prevents successful implementation of waste heat recovery is due to intermittent and time mismatched demand for and availability of energy. The present work deals with the use of exergy as an efficient tool to measure the quantity and quality of energy extracted from a diesel engine and stored in a combined sensible and latent heat storage system. This analysis is utilized to identify the sources of losses in useful energy within the components of the system considered, and provides a more realistic and meaningful assessment than the conventional energy analysis. The energy and exergy balance for the overall system is quantified and illustrated using energy and exergy flow diagrams. In order to study the discharge process in a thermal storage system, an illustrative example with two different cases is considered and analyzed, to quantify the destruction of exergy associated with the discharging process. The need for promoting exergy analysis through policy decision in the context of energy and environment crisis is also emphasized.  相似文献   

14.
自然吸气柴油机高海拔(低气压)热平衡试验研究   总被引:1,自引:0,他引:1  
基于内燃机高海拔(低气压)热平衡模拟试验台,对某型内燃叉车自然吸气柴油机进行了热平衡高原模拟试验,研究了柴油机燃烧放热量分配、冷却液温度以及排气温度等随海拔高度(大气压力)的变化规律.结果表明:随着海拔的升高,转化为有效功的热量、冷却水散热量以及排气带走的热量均不断下降,柴油机不完全燃烧造成的热损失、机体散失的热量以及...  相似文献   

15.
本文针对废气涡轮增压系统及其排气能量利用的特点,讨论了排气有用能的评价参数以及其所必须满足的若干条件.在此基础上,根据热力学第二定律,提出以涡轮?差函数作为排气有用能的评价参数,并作了详细的理论分析.本文还利用该参数对6PA6L柴油机排气有用能的动态传递过程进行了计算,给出了排气能量从气缸传递到涡轮的损失.  相似文献   

16.
ABSTRACT

This study investigates the merits of exergy analysis over energy analysis for small direct injection (DI) diesel engine using the blend of waste cooking oil biodiesel and petroleum diesel. Taguchi’s “L’ 16” orthogonal array has been used for the design of experiment. The engine tested at different engine speeds, load percentages, and blend ratios, using the waste cooking oil biodiesel. Basic performance parameters and fuel input exergy, exergetic efficiency (second law efficiency), exergy associated with heat transfer, exergy associated with the exhaust gas and destruction of exergy are calculated for each blend of waste cooking oil biodiesel and diesel. Results show that the optimum operating conditions for minimum brake-specific fuel consumption (BSFC) and exergy destruction are achieved when engine speed at 1900 rev/min, load percentage is 75%, and the engine is fueled with B40.  相似文献   

17.
This communication presents second law analysis based on exergy concept for a solar thermal power system. Basic energy and exergy analysis for the system components (viz. parabolic trough collector/receiver and Rankine heat engine etc.) are carried out for evaluating the energy and exergy losses as well as exergetic efficiency for typical solar thermal power system under given operating conditions. Relevant energy flow and exergy flow diagrams are drawn to show the various thermodynamic and thermal losses. It is found that the main energy loss takes place at the condenser of the heat engine part whereas the exergy analysis shows that the collector-receiver assembly is the part where the losses are maximum. The analysis and results can be used for evaluating the component irreversibilities which can also explain the deviation between the actual efficiency and ideal efficiency of solar thermal power system.  相似文献   

18.
Exergy analysis gives the presentation of a system relative to its best performance. In addition, the exergy destructed can react with its surrounding and harm environment processes. This study investigated the effect of biodiesel fuel blended with diesel fuel (i.e. 0%, 20%, and 50% blending of biodiesel fuel with conventional diesel fuel) on various exergy terms in an HCCI engine. To model the energy balance a 3-D CFD code was utilized. Using energy and combustion analyses results, the researchers calculated various exergy terms by developing a FORTRAN based code. To ensure the integrity of modeling, the results of the in-cylinder pressure and heat release rate were compared with the experimental results for pure diesel fuel. This comparison indicated a good agreement between the two. With crank position at three fuel compositions, different rates of exergy and cumulative exergy terms were identified and calculated separately. With the increase in the biodiesel volume percentage from 0% to 20% and 50%, exergy efficiency increased by 4.9% and 5.7%. Also, the cumulative heat loss exergy decreased by 4.4% and 9.7%, respectively.  相似文献   

19.
Hydrogen is considered as an excellent energy carrier and can be used in diesel engines that operate in dual fuel mode. Many studies have shown that biodiesel, which is sustainable, clean, and safe, a good alternative to fossil fuel. However, tests have confirmed that using biodiesel or hydrogen as a fuel or added fuel in compression ignition engines increases NOx concentrations. Cooled or hot exhaust gas recirculation (EGR) effectively controls the NOx outflows of diesel engines. However, this technique is restricted by high particulate matter PM emissions and the low thermal efficiency of diesel engines.In this study, gaseous hydrogen was added to the intake manifold of a diesel engine that uses biodiesel fuel as pilot fuel. The investigation was conducted under heavy-EGR conditions. An EGR system was modified to achieve the highest possible control on the EGR ratio and temperature. Hot EGR was recirculated directly from the engine exhaust to the intake manifold. A heat exchanger was utilized to maintain the temperature of the cooled EGR at 25 °C.The supplied hydrogen increased NOx concentrations in the exhaust gas emissions and high EGR rates reduced the brake thermal efficiency. The reduction in NOx emissions depended on the added hydrogen and the EGR ratios when compared with pure diesel combustion. Adding hydrogen to significant amounts of recycled exhaust gas reduced the CO, PM, and unburned hydrocarbon (HC) emissions significantly. Results showed that using hydrogen and biodiesel increases engine noise, which is reduced by adding high levels of EGR.  相似文献   

20.
A hydrogen fueled internal combustion engine has great advantages on exhaust emissions including carbon dioxide (CO2) emission in comparison with a conventional engine fueling fossil fuel. In addition, if it is compared with a hydrogen fuel cell, the hydrogen engine has some advantages on price, power density, and required purity of hydrogen. Therefore, they expect that hydrogen will be utilized for several applications, especially for a combined heat and power (CHP) system which currently uses diesel or natural gas as a fuel.A final goal of this study is to develop combustion technologies of hydrogen in an internal combustion engine with high efficiency and clean emission. This study especially focuses on a diesel dual fuel (DDF) combustion technology. The DDF combustion technology uses two different fuels. One of them is diesel fuel, and the other one is hydrogen in this study. Because the DDF engine is not customized for hydrogen which has significant flammability, it is concerned that serious problems occur in the hydrogen DDF engine such as abnormal combustion, worse emission and thermal efficiency.In this study, a single cylinder diesel engine is used with gas injectors at an intake port to evaluate performance swung the hydrogen DDF engine with changing conditions of amount of hydrogen injected, engine speed, and engine loads. The engine experiments show that the hydrogen DDF operation could achieve higher thermal efficiency than a conventional diesel operation at relatively high engine load conditions. However, it is also shown that pre-ignition with relatively high input energy fraction of hydrogen occurred before diesel fuel injection and its ignition. Therefore, such abnormal combustion limited amount of hydrogen injected. Fire-deck temperature was measured to investigate causal relationship between fire-deck temperature and occurrence of pre-ignition with changing operative conditions of the hydrogen DDF engine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号