首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
This study determines the factors responsible for the growth of transport sector CO2 emissions in 20 Latin American and Caribbean (LAC) countries during the 1980–2005 period by decomposing the emissions growth into components associated with changes in fuel mix (FM), modal shift and economic growth, as well as changes in emission coefficients (EC) and transportation energy intensity (EI). The key finding of the study is that economic growth and the changes in transportation EI are the principal factors driving transport sector CO2 emission growth in the countries considered. While economic growth is responsible for the increasing trend of transport sector CO2 emissions in Argentina, Brazil, Costa Rica, Peru and Uruguay, the transportation EI effect is driving CO2 emissions in Bolivia, the Caribbean, Cuba, Ecuador, Guatemala, Honduras, Other Latin America, Panama and Paraguay. Both economic activity (EA) and EI effects are found responsible for transport sector CO2 emissions growth in the rest of the Latin American countries. In order to limit CO2 emissions from the transportation sector in LAC countries, decoupling of the growth of CO2 emissions from economic growth is necessary; this can be done through policy instruments to promote fuel switching, modal shifting and reductions in transport sector EI. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO2) emissions in selected Asian countries during the 1980–2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO2 emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO2 emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO2 emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO2 emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO2 emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes.  相似文献   

3.
Given the booming economic growth and urbanization in China, cities have become crucial to sustaining this development and curbing national emissions. Understanding the key drivers underlying the rapid emissions growth is critical to providing local solutions for national climate targets. By using index decomposition analysis, we explore the factors contributing to the carbon dioxide (CO2) emissions in Chinese megalopolises from 1985 to 2010. An additional decomposition analysis of the industry sector is performed because of its dominant contribution to the total emissions. The booming economy and expanding urban areas are the major drivers to the increasing CO2 emissions in Chinese megalopolises over the examined period. The significant improvement in energy intensity is the primary factor for reducing CO2 emissions, the declining trend of which, however, has been suspended or reversed since 2000. The decoupling effect of the adjustments in the economic structure only occurred in three megalopolises, namely, the Yangtze River Delta (YRD), the Beijing-Tianjin-Heibei Megalopolis (BTJ), and the Pearl River Delta (PRD). In comparison, the impacts of urban density and carbon intensity are relatively marginal. The further disaggregated decomposition analysis in the industry sector shows that energy intensity improvements were widely achieved in 36 sub-industries in the PRD. The results also indicate the concentrations of energy-intensive industries in the PRD, posing a major challenge to local governments for a low-carbon economy. As economic growth and urbanization continue, reductions in energy intensity and clean energy therefore warrant much more policy attentions due to their crucial roles in reducing carbon emissions and satisfying the energy demand.  相似文献   

4.
Using LMDI method to analyze transport sector CO2 emissions in China   总被引:1,自引:0,他引:1  
W.W. Wang  M. Zhang  M. Zhou 《Energy》2011,36(10):5909-5915
China has been the second CO2 emitter in the world, while the transportation sector accounts for a major share of CO2 emissions. Analysis of transportation sector CO2 emissions is help to decrease CO2 emissions. Thus the purpose of this paper is to investigate the potential factors influencing the change of transport sector CO2 emissions in China. First, the transport sector CO2 emissions over the period 1985–2009 is calculated based on the presented method. Then the presented LMDI (logarithmic mean Divisia index) method is used to find the nature of the factors those influence the changes in transport sector CO2 emissions. We find that: (1) Transport sector CO2 emissions has increased from 79.67 Mt in 1985 to 887.34 Mt in 2009, following an annual growth rate of 10.56%. Highways transport is the biggest CO2 emitter. (2) The per capita economic activity effect and transportation modal shifting effect are found to be primarily responsible for driving transport sector CO2 emissions growth over the study period. (3) The transportation intensity effect and transportation services share effect are found to be the main drivers of the reduction of CO2 emissions in China. However, the emission coefficient effect plays a very minor role over the study period.  相似文献   

5.
There are large gaps in energy consumption data and consequently in the estimates of CO2 emissions from fuel combustion in Kazakhstan. This study provides the first comprehensive review of energy consumption trends in Kazakhstan, discusses several important discrepancies in energy statistics and presents an improved versions of Energy Balances, developed using additional data. The results indicate that Kazakhstan’s energy intensity of gross domestic product (GDP) declined by 30% from 1.14 to 0.8 toe/thousand 2005USD between 2000 and 2014. To understand factors influencing this decline, the change in energy intensity of GDP was decomposed using the Logarithmic Mean Divisia Index I method. The upstream sector (mainly oil and gas) played the most important role in the observed GDP energy intensity change. Although the share of this sector in total GDP increased, causing an increase in energy intensity due to inter-sectoral structural effects, the consequences were counteracted by a twofold decline in the sector’s energy intensity, resulting in a net decrease. On the contrary, the power and heat, transport and household sectors saw an increase in energy intensity between 2000 and 2014. The results clearly demonstrate that there is an urgent need for policies and measures to be put in place in the power and heat, household and transport sectors, to support renewable energy development, increase buildings’ energy efficiencies, replace inefficient stoves and improve heating systems and encourage changes in public transportation systems. Furthermore, improving energy statistics and setting appropriate sectoral energy intensity reduction targets are crucial for achieving real efficiency improvements in the economy.  相似文献   

6.
Road transport is one of the sectors with highest energy consumptions in the planet, with large dependence of fossil fuels, and contribution for global greenhouse gas emissions. Although, Latin America is not a high-energy consumer, its share in global consumption is expected to grow, especially in the transportation sector. This make essential for developing countries the adoption of better policies to identify the vehicle groups with largest fuel demands. The present study describes the VKT technique to disaggregate road transport energy consumption by vehicle type, applied to the road transportation system of Ecuador. It also describes the procedures performed to estimate the variables required to run the model, and some of the practical applications that be used to create public policies. Results show as the biggest fuel consumers the heavy-duty freight cargo, followed by light duty vehicles. The estimation of greenhouse gas emissions evidence that road transport released 14.3 million tons of CO2 in 2012. When fuel consumption is compared by it costs, it can be confirmed that Ecuadorean Government covered, through subsidies, for 68% of the annual fuel costs of national road transport, demonstrating the importance of restructuring these expenditures in order to achieve an efficient road transport system.  相似文献   

7.
Transport will be the strongest growing energy demand sector in the future, especially in developing countries like China, and it needs more attention. The evolution of transport structure is very important in the dynamic of transport development, and therefore worth emphasis. In this study, a modal split model maximizing spatial welfare and constrained by travel money budget and time budget is developed. This approach differs from the general econometric-based approach used in most existing macro transport studies and deals with the cost and speed of transport modes as important variables explicitly. The model is then applied to China's transport sector together with sensitivity test despite many data problems. The decomposition of energy consumption generated from bottom-up model based on this modal split identified the importance of modal split and turnover expansion in the next 30 years, which should be a stronger area of focus in transportation studies.  相似文献   

8.
基于长期能源替代规划系统(LEAP)模型,结合情景分析法,模拟广州交通领域未来的能耗及CO、HC、NOx、PM2.5、SO2等主要空气污染物排放趋势,分析广州交通领域的节能及空气污染物排放控制策略。结果表明:综合情景下,到2035年,广州交通领域将较基准情景节能23.06%,CO、HC、NOx、PM2.5、SO2分别减排30.05%、28.31%、27.86%、23.77%、16.33%;各子情景中,能源结构优化情景的节能减排贡献最大;从运输类型来看,公路货运、私人交通、公路客运、水路货运和航空客运的节能减排贡献较大;要实现城市交通能耗及污染物排放控制,需要大力发展公共交通,促进铁路和水路运输的发展,以部分分流私人交通、公路和航空运输的交通需求增长,同时提高能源清洁化率和能效水平。  相似文献   

9.
This study examines the primary energy consumption and energy-related CO2 emissions in Argentina, Brazil, Colombia, Mexico and Venezuela during the period 1990-2006. It also reviews important reforms in the energy sector of these countries as well as the promotion of energy efficiency (EE) and renewable energy sources (RES). Using a decomposition analysis, results indicate that even though significant reductions in energy intensity have been achieved in Colombia, Mexico and in a lesser extent in Brazil and Argentina, the reduction of CO2 emissions in these countries has not been significant due to an increased dependence on fossil fuels in their energy mix. Although the Latin American region has an important experience in the promotion of EE programs and renewable sources, the energy agenda of the examined countries focused mostly on the energy reforms during the analyzed period. The policy review suggests that further governmental support and strong public policies towards a more sustainable energy path are required to encourage a low carbon future in the region.  相似文献   

10.
Road transport is responsible for a large and growing share of CO2 emissions in most countries. A number of new fuel‐efficient vehicle technologies and renewable transport fuels are possible alternatives to conventional options but their deployment relies strongly on different policy measures. Even though a future higher use of transport biofuels and electric vehicles is likely to increase the interaction between the transportation sector and the stationary energy system (heat, power, etc.), these systems are often analysed separately. In this study, a transport module is developed and integrated into the MARKAL_Nordic energy system model. The transport module describes a range of vehicle technologies and fuel options as well as different paths for conversion of primary energy resources into transport fuels. The integrated model is utilized to analyse the impact of transport fuel tax designs on future cost‐effective fuel and technology choices in the Swedish transportation sector, as well as the consequences of these choices on system costs and CO2 emissions. The model, which is driven by cost‐minimization, is run to 2050 with various assumptions regarding transport fuel tax levels and tax schemes. The results stress the importance of fuel taxes to accelerate the introduction of fuel‐efficient vehicle technologies such as hybrids and plug‐in hybrids. Tax exemptions can make biofuels an economically favourable choice for vehicle users. However, due to limitations in biomass supply, a too strong policy‐focus on transport biofuels can lead to high system costs in relation to the CO2 abatement achieved. The modelling performed indicates that the effects caused by linkages between the transportation sector and the stationary energy system can be significant and integrated approaches are thus highly relevant. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
F. Birol  N. Guerer 《Energy Policy》1993,21(12):1163-1172
This paper concentrates on the transport sector of six developing countries with similar common denominators, namely Turkey, Thailand, Pakistan, Morocco, Tunisia and Malaysia. By using standard econometric techniques, we analyse the evolution of oil demand for road transport in these countries in relation to independent variables such as income, population, price of gasoline and diesel etc. Unlike the treatment in the present literature on the subject, gasoline and diesel consumption are estimated separately due to the high share of diesel in the total transport sector consumption. On the basis of the estimation over the period 1970–1990, on a country by country basis, we forecast the demand for these six countries until 2010. The results of this study indicate that the transport sector will be the driving force for energy and oil demand as part of economic growth in these developing countries. Its share in the future energy market structure is expected to grow. Consequently, the (pricing) policies of oil products in this sector have a crucial role for shaping rational economic and energy strategies within the framework of rising environmental concern.  相似文献   

12.
The rapid growth of urban population and the development of road infrastructures in Tunisian cities have brought about many environmental and economic problems, including the rise scored in energy consumption and the increase in the quantity of gas emissions arising from road transport. Despite the critical nature of such problems, no policies have yet been adopted to improve energy efficiency in the transport sector. This paper aims to determine driving factors of energy consumption change for the road mode. It uses decomposition analysis to discuss the effects of economic, demographic and urban factors on the evolution of transport energy consumption. The main result highlighted in the present work is that vehicle fuel intensity, vehicle intensity, GDP per capita, urbanized kilometers and national road network are found to be the main drivers of energy consumption change in the road transport sector during 1990–2006 period. Consequently, several strategies can be elaborated to reduce road transport energy. Economic, fiscal and regulatory instruments can be applied in order to make road transport more sustainable.  相似文献   

13.
Energy and exergy utilization efficiencies in the Turkish transportation sector over the period from 2000 to 2020 are evaluated in this study. A comparison of the overall energy and exergy efficiencies of the Turkish transportation sector with the other countries is also presented. Energy and exergy analyses are performed for four transport modes, namely roadway, railway, airway and seaway, while they are based on the actual data for 2000 and projected data for 2020. Roadway appears to be the most efficient mode when compared with railway, air and seaway. It is projected that about 15% of total energy resources will be used in this sector during 2020. The energy utilization efficiencies for the Turkish transportation sector range from 23.71% in 2000 to 28.75% in 2020, while the exergy utilization efficiencies vary from 23.65% to 28.85% in the same years, respectively. Exergetic improvement potential for this sector is estimated to be 700 PJ in 2020, with an average increase rate of 4.5% annually between 2000 and 2020. Road transport and oil-fuelled combustion engines offer the principal scope for exergetic improvement in the coming decades. It may be concluded that the methodology used in this study is practical and useful for analyzing sectoral energy and exergy utilization to determine how efficiently energy and exergy are used in the sector studied. It is also expected that this study will be helpful in developing highly applicable and productive planning for energy policies.  相似文献   

14.
As the population and economy continue to grow globally, demand for energy will continue to grow. The transportation sector relies solely on petroleum for its energy supply. The United States and China are the top two oil-importing countries. A major issue both countries face and are addressing is energy insecurity as a result of the demand for liquid fuels. Improvements in the energy efficiency of vehicles and the substitution of petroleum fuels with alternative fuels can help contain growth in the demand for transportation oil. Although most alternative transportation fuels — when applied to advanced vehicle technologies — can substantially reduce greenhouse emissions, coal-based liquid fuels may increase greenhouse gas emissions by twice as much as gasoline. Such technologies as carbon capture and storage may need to be employed to manage the greenhouse gas emissions of coal-based fuels. At present, there is no ideal transportation fuel option to solve problems related to transportation energy and greenhouse gas emissions. To solve these problems, research and development efforts are needed for a variety of transportation fuel options and advanced vehicle technologies.  相似文献   

15.
Urban development has an important influence on the energy consumption of transportation. To develop public transportation is one of the important ways to decrease the energy consumption of urban transportation. It is very urgent to upgrade technology to reduce the energy consumption and emissions of the vehicles constantly. The popularization of hydrogen fuel cell vehicles is the trend of the future automobile industry, which can effectively reduce traffic energy consumption and alleviate urban pollution. This article analyzes the impact of urban development on public transport and private transportation energy consumption from 2013 to 2015; and uses hydrogen fuel cell vehicles alternatives in urban public transport as a scenario. It shows that urban economic development can effectively reduce public transport. Population growth will increase greatly energy consumption of public transport, while larger cities with reasonable spatial density can reduce traffic energy consumption. Moreover, hydrogen fuel cell vehicles can effectively reduce the energy consumption and pollution emissions of urban transportation during operating. Based on the above conclusions, this article will eventually provide targeted recommendations for the development of Chinese cities, public transport, and hydrogen fuel cell vehicles.  相似文献   

16.
From the early 1970s to mid 1990s, service sector CO2 emissions have increased significantly in OECD countries, despite marked declines in energy intensity. This development is underscored by a widespread shift from fuel use to electricity use in commercial buildings. Service sectors in countries that produce low-carbon electricity, particularly those that operate nuclear- and hydro-powered utilities, have most successfully restrained CO2 emissions. This study analyzes the impact of activity, structure, energy intensity, fuel mix, and utility mix on carbon emissions in the service sector for 13 OECD countries, and contrasts the developments before 1990 with those afterwards. The major findings of this analysis are:

(i) Carbon emissions, which rose in 9 of the 13 countries investigated, were bolstered in every country by an expansion of floor area and service sector GDP,

(ii) Declines in energy intensity and carbon intensity lessened the magnitude of emissions increases,

(iii) Electricity's share of final energy use rose in all 13 countries, but affected carbon emissions quite differently among countries,

(iv) After 1990, energy intensity improvements applied less downward pressure on emissions, while reductions in the average carbon content of final energy restrained emissions more strongly.  相似文献   


17.

Trends in truck freight energy use and carbon emissions

In the age of global supply chains and “just in time” logistics, fast and efficient goods movement is often seen as an economic imperative. Growth in global goods movement not only translates into growth in commercial trucking activity but also into growth in the share of trucking compared to other modes of in-country freight transportation. These trends have a significant impact on the energy intensity of freight transport. Using a bottom-up approach relying on national data, this study compares the energy intensity of truck freight in Australia, France, Japan, the United Kingdom and the United States from 1973 to the present. The analysis builds on previous work by Schipper et al. (1997) and Schipper and Marie-Lilliu (1999) decomposing energy use for freight. Intensity is expressed in terms of vehicle intensity (megajoules/vehicle-kilometer), modal energy intensity (megajoules/tonne-kilometer), and carbon intensity (grams/tonne-km). The cross-country comparison highlights in part the influence of geography, transportation infrastructure, and truck utilization patterns on energy and carbon intensity from this sector. While improving fuel economy of individual vehicles is very important, large reductions in trucking energy use and emissions will also come from better logistics and driving, higher load factors, and better matching of truck capacity to load.  相似文献   

18.
在我国中长期的终端能源需求中石油将占约15%的份额,其中55%~60%将被用于交通运输行业。逐步减少交通运输领域石油能源产品的使用量,对减少能源消费总量和二氧化碳排放量十分重要。目前国内外研究机构预测的中国2050年货运周转总量(8×104~9×104Gt.km)及公路货运周转量均明显偏高,造成预测的运输燃料消耗量太高,这也反映出调整中国经济产业结构和进出口贸易结构的紧迫性。减少私人乘用车的拥有量和出行量也是节能减排的关键,采用西方发达国家私人乘用车的比例,预测中国2050年将拥有5×108~6×108辆乘用车不符合中国人口众多、城市中心区人口密度的特点,将乘用车数量控制在3.0×108辆的水平比较恰当。目前全球运输领域二氧化碳排放量约占总排放量的20%~25%,中国运输领域的二氧化碳排放量将逐步上升,占总排放量的份额将从目前的7%提高到2050年的30%以上。应努力采取各种措施,使2050年乘用车的二氧化碳排放强度降低到40g/km的水平。除了减少化石能源石油产品使用量、使用生物质燃料、推广纯电动汽车和开发燃料电池汽车外,改变出行方式、发展方便快捷的公共交通显得十分重要。预计我国2050年燃料电池汽车将占到小汽车保有量的20%左右,纯电动汽车占30%左右,各种混合动力汽车将占50%左右。为了使中国2050年二氧化碳排放总量控制在40×108~50×108t的水平,有可能也有必要将石油的使用量控制在6.0×108t,交通运输领域石油能源产品使用量控制在4.0×108t以下。  相似文献   

19.
The paper presents a decomposition analysis of the changes in carbon dioxide (CO2) emissions from passenger cars in Denmark and Greece, for the period 1990–2005. A time series analysis has been applied based on the logarithmic mean Divisia index I (LMDI I) methodology, which belongs to the wider family of index decomposition approaches. The particularity in road transport that justifies a profound analysis is its remarkably rapid growth during the last decades, followed by a respective increase in emissions. Denmark and Greece have been selected based on the challenging differences of specific socio-economic characteristics of these two small EU countries, as well as on the availability of detailed data used in the frame of the analysis. In both countries, passenger cars are responsible for half of the emissions from road transport as well as for their upward trend, which provokes the implementation of a decomposition analysis focusing exactly on this segment of road transport. The factors examined in the present decomposition analysis are related to vehicles ownership, fuel mix, annual mileage, engine capacity and technology of cars. The comparison of the results discloses the differences in the transportation profiles of the two countries and reveals how they affect the trend of CO2 emissions.  相似文献   

20.
《Energy Policy》2007,35(10):5136-5150
Transportation is a major source of greenhouse gas (GHG) emissions and the most rapidly growing anthropogenic source. In the future, the developing world will account for the largest share of transport GHG increases. Four basic components drive transportation energy consumption and GHG emissions: activities (A), mode share (S), fuel intensity (I) and fuel choice (F) (ASIF). Currently, the Kyoto Protocol's clean development mechanism (CDM) serves as the main international market-based tool designed to reduce GHG emissions from the developing world. Theoretically, the CDM has the dual purpose of helping developing countries achieve “sustainable development” goals and industrialized countries meet their Kyoto emissions reduction commitments. This paper reviews overall CDM activities and transportation CDM activities to date and then presents findings from three case studies of transportation CDM possibilities examined with the ASIF framework in Santiago de Chile. The analysis suggests that bus technology switch (I) provides a fairly good project fit for the CDM, while options aimed at inducing mode share (S) to bicycle, or modifying travel demand via land use changes (ASI) face considerable challenges. The implications of the findings for the CDM and the “post-Kyoto” world are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号