首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
研究了不同掺量石灰石粉和普通硅酸盐水泥对硫铝酸盐水泥凝结时间和力学性能的影响,采用水化热测试对水化进程进行了分析,同时,采用DTG对水化产物进行了综合热分析。结果表明:石灰石粉的掺入,缩短了终凝时间,降低了抗压强度;普通硅酸盐水泥的掺入,提高了硫铝酸盐水泥的水化速率,促进了C-S-H凝胶和AFt的生成;随着普通硅酸盐水泥掺量的增加,胶砂的早期强度逐渐降低,后期强度逐渐提高,当普通硅酸盐水泥掺量为40%时,5 h抗压强度最高,为35.9 MPa,当普通硅酸盐水泥掺量为80%时,28 d抗压强度最高,为94.5 MPa。  相似文献   

2.
研究了柠檬酸对阿利特-硫铝酸盐水泥(ACSA)的凝结时间及水化过程的影响。研究结果表明:当柠檬酸的掺量在0.1%以下时,能够使得C3S的水化放热峰前移,对ACSA起促凝作用,且其1、3 d强度较空白样稍有提高;当掺量大于0.1%时,能够使得C3S的水化放热峰后移,延缓C3S的水化,且随着掺量的增加其缓凝作用愈加显著。当柠檬酸掺量达到0.3%时,凝结时间可达到113 min,较空白样提高了45%,且其1、3 d的净浆抗压强度与P·II 52.5水泥相当;当柠檬酸掺量达到0.6%时,凝结时间可达到283 min,但此时的1 d强度为零;柠檬酸能够延缓CH的生成,也能促进AFt的生成,同时柠檬酸的加入还能在一定程度上促进AFt向AFm的转化。  相似文献   

3.
研究了偏高岭土、粉煤灰、矿粉、硅灰等矿物掺合料种类以及掺入方式对水泥砂浆抗折性能的影响规律,采用XRD分析了硬化水泥浆体的水化产物。结果表明:单掺情况下,偏高岭土对水泥砂浆抗折强度的增强作用最明显,掺量为15%时,28、56 d水泥砂浆抗折强度分别提高了12.2%、36.1%;复掺情况下,偏高领土与粉煤灰和矿粉复掺的效果最好,28、56 d水泥砂浆抗折强度分别提高了16.4%、28.6%。掺入不同矿物掺合料时,水泥水化产物种类无明显区别,主要晶相组成为Ca(OH)_2、AFt;偏高岭土-矿粉-粉煤灰复掺,复合效应显现,提高了水化产物中钙矾石生成量,降低了水泥水化析出的Ca(OH)_2含量,能显著提高水泥砂浆的抗折强度。  相似文献   

4.
研究了偏高岭土、粉煤灰、矿粉、硅灰等矿物掺合料种类以及掺入方式对水泥砂浆抗折性能的影响规律,采用XRD分析了硬化水泥浆体的水化产物。结果表明:单掺情况下,偏高岭土对水泥砂浆抗折强度的增强作用最明显,掺量为15%时,28、56 d水泥砂浆抗折强度分别提高了12.2%、36.1%;复掺情况下,偏高领土与粉煤灰和矿粉复掺的效果最好,28、56 d水泥砂浆抗折强度分别提高了16.4%、28.6%。掺入不同矿物掺合料时,水泥水化产物种类无明显区别,主要晶相组成为Ca(OH)_2、AFt;偏高岭土-矿粉-粉煤灰复掺,复合效应显现,提高了水化产物中钙矾石生成量,降低了水泥水化析出的Ca(OH)_2含量,能显著提高水泥砂浆的抗折强度。  相似文献   

5.
研究了在不同普通硅酸盐水泥掺量下,硫铝酸盐水泥基复合胶凝材料的流动度,凝结时间和水泥砂浆强度性能的影响。研究结果表明:普通硅酸盐水泥掺量小于50%时,普硅水泥-低碱度硫铝酸盐水泥混合体系的凝结时间和流动度随着普硅水泥掺量的增加而减小。随普通硅酸盐水泥掺量的增加,复合水泥砂浆的强度先减小后增大,当掺量为40%时水泥砂浆的强度达到了最大值。利用XRD和SEM微观测试手段对硫铝酸盐水泥基复合胶凝材料的水化产物和水化机理进行了分析和讨论。  相似文献   

6.
研究了5%掺量下,不同质量比的非晶态C_(12)A_7/CaSO_4·2H_2O体系对OPC净浆凝结时间、流动性和早期抗压强度的影响,通过XRD和SEM对水化产物的物相和形貌进行了表征。结果表明:非晶态C_(12)A_7/CaSO_4·2H_2O体系能够促进C_3S和C_2S的水化,生成C-S-H凝胶相互交织搭接形成网络结构而促进凝结;同时也促使OPC水化早期产生针状晶体钙矾石,钙矾石与前期生成的C-S-H凝胶相互填充,使水化产物结构密实,提高早期强度;当非晶态C_(12)A_7/CaSO_4·2H_2O体系掺量为5%,非晶态C_(12)A_7与CaSO_4·2H_2O的质量比为1.0∶1.0时,水泥早期强度最高,7 d抗压强度达到100 MPa,说明此体系反应比较完全。  相似文献   

7.
通过热重-差式扫描量热仪、原子力显微镜、扫描电子显微镜-能谱分析研究了偏高岭土对硅酸盐水泥水化产物Ca(OH)2的含量,C-S-H凝胶的形貌特征、化学组成和堆聚结构的影响,讨论了水化产物性质随偏高岭土掺量变化的规律。结果表明:偏高岭土的掺入,水化产物Ca(OH)2的含量相应降低,在偏高岭土掺量15%时,水化28d龄期试样中Ca(OH)2的质量分数由18.68%降低到13.66%;同时C-S-H凝胶颗粒尺寸随着偏高岭土掺量的增加而逐渐减小,堆聚更加紧密,偏高岭土与水泥水化产物Ca(OH)2反应生成结构致密稳定性更好的低Ca/Si值的C-S-H凝胶,改善了C-S-H凝胶的结构和化学组成。  相似文献   

8.
通过测定氯化锌在水泥颗粒表面的吸附行为和ζ电位,结合水化热、水化产物分析等研究氯化锌对普通硅酸盐水泥的缓凝机理。结果表明:ZnCl2在水泥颗粒表面的吸附量随掺量增加而增加,吸附率随掺量增加而减小;5min时ζ电位随掺量增加而明显增大,30min后掺量对ζ电位的影响变小;ZnCl2能与OH-离子结合生成不溶性化合物,提高早期浆体中的Ca2+浓度;掺入ZnCl2后第二温峰出现的时间推后,并且水化产物减少;掺ZnCl2对早期强度影响较小,但能较好的提高后期强度,掺量为0.2%时,胶砂的抗压强度最好。  相似文献   

9.
以镁渣、矿渣、水泥熟料配制镁渣胶凝材料,探讨了镁渣掺量、水泥熟料掺量、物料粉磨工艺、辅助激发剂复掺对镁渣胶凝材料强度(抗压和抗折强度)的影响,分析了镁渣胶凝材料水化产物的矿物组成.结果表明:当镁渣与矿渣掺量相等时,镁渣胶凝材料有较好的强度;镁渣胶凝材料水化较慢,28d后强度还有大幅度的增长;水泥熟料掺量越大,镁渣胶凝材料强度越高;相比先磨后混工艺,先混后磨工艺所制备的镁渣胶凝材料有更好的强度;复掺3种辅助激发剂(水玻璃、硫酸钠、石膏)后,镁渣胶凝材料强度性能达到32.5强度等级复合水泥标准要求.镁渣胶凝材料水化产物主要由C-S-H,Ca(OH)_2和AFt等组成.  相似文献   

10.
选用电解锰渣激发钢渣,研究电解锰渣的掺量对钢渣活性的影响及钢渣活性激发机理。借助XRD和SEM对钢渣胶凝材料水化产物进行矿物相分析和微观形貌分析;比较不同龄期的钢渣活性指数。研究结果表明当钢渣与电解锰渣复合取代50%水泥时,电解锰渣掺量为14%激发效果最佳,该比例下钢渣胶凝材料7 d的活性指数从54%提高到84%,28 d的活性指数从70%提高到92%,可达到425~#强度等级要求。电解锰渣掺入能够加速钢渣水化产物中C-S-H凝胶、AFt晶体的形成,反应生成的水化产物吸收了、熟料水化过程中释放的Ca(OH)_2,增大了钢渣水化浆体的密实度,从而提高了钢渣的活性。  相似文献   

11.
通过凝结时间、早期抗压强度、水化热、水化产物形貌等研究了液体速凝剂对水泥早期水化反应历程的影响.结果表明,使用液体速凝剂的水泥浆体在水化的初始阶段形成了大量的水化铝酸钙晶体及针棒状的钙矾石,从而促进了水泥浆体的凝结.液体速凝剂增加了水泥早期产物中铝酸盐与硫酸盐的比例,加快了钙矾石(AFt)转化为单硫型硫铝酸钙(AFm)...  相似文献   

12.
采用x射线半定量分析方法研究了在快硬混凝土中掺加缓凝剂和促硬荆对硫铝酸盐水泥凝结时间、水化历程、水化产物种类的影响.结果表明:快硬硫铝酸盐水泥的水化产物主要有Aft、Afm、C4H13及Al(OH)3,而C2S的水化非常缓慢;快硬硫铝酸盐水泥快凝早强的主要原因是Aft的生成,而后期强度发展停滞甚至倒缩的原因主要是Aft...  相似文献   

13.
将实验室烧成的硫铝酸钙矿物(C_4A_3S)与石膏(CSH2)、石灰(CH)复配制成硫铝酸盐水泥,研究其水化产物中铝凝胶相(AH3)及水化程度对水泥石强度的影响.用Rietveld全谱拟合方法对烧成的C_4A_3S进行了定量分析,用XRD和TG-DTG对其水化产物进行了定性、定量分析.结果表明:当AH3含量较高、钙矾石(AFt)含量较低时,AH3会填充在硫铝酸盐水泥浆体的空隙中,从而使其抗压强度升高;CSH2能促进C_4A_3S的水化,并且随着CSH2掺量的增加,硫铝酸盐水泥石抗压强度先升后降,当n(C_4A_3S)/n(CSH2)为3/4,即CSH2掺量为27.32%(质量分数)时,其抗压强度最大;另外,C_4A_3S水化程度与AH3含量的提高均有利于硫铝酸盐水泥石抗压强度的增大,当二者对抗压强度的影响达到平衡时,其抗压强度最大.  相似文献   

14.
从早期硬化强度发展、水化离子溶出规律、水化放热行为以及水化物相和微观形貌层次阐述了液体无碱速凝剂对硅酸盐水泥早期水化的影响.结果表明:液体无碱速凝剂通过速凝阶段针棒状钙矾石的迅速形成而使得硅酸盐水泥初始水化放热显著提高;氟离子的引进促进了速凝阶段C3S的快速溶解水化并形成C-S-H凝胶,明显改善了无碱速凝剂的速凝作用效果及其与减水剂的适应性,但显著降低了水化24h的硬化体强度,原因是氟离子在水化加速阶段消耗钙离子而形成了片状CaF2产物,在吸附插层作用下对C-S-H凝胶产生包裹抑制作用,从而明显延缓了水泥水化过程.  相似文献   

15.
激发剂对钢渣胶凝材料性能的影响   总被引:1,自引:0,他引:1  
以钢渣、矿渣、水泥熟料为主要原料,并掺入少量激发剂,成功制备了高强、高钢渣掺量的钢渣胶凝材料.探讨了激发剂、熟料掺量、钢渣掺量对钢渣胶凝材料性能的影响,并通过SEM,XRD分析了激发剂对钢渣胶凝材料浆体水化产物及水泥石微观结构的作用.结果表明:激发剂显著提高了钢渣的活性,从而大幅度提高了钢渣胶凝材料的早期性能;掺加激发剂后,钢渣胶凝材料3 d抗压强度可增加119.7%;激发荆对钢渣胶凝材料浆体水化产物种类的影响不大;与硅酸盐水泥浆体相比,钢渣胶凝材料浆体中C-S-H凝胶和Aft晶体含量明显增多,Ca(OH)2晶体含量显著降低.  相似文献   

16.
用电学方法研究了波特兰水泥的水化诱导期.测定了不同水化时间波特兰水泥浆体的电阻率、钙离子浓度、氢氧化钙含量和氢氧化钙分解温度,并结合水泥水化放热速率,讨论了水泥的各水化阶段.研究结果表明:水泥水化时,浆体电阻率变化表现出一定的规律性;电阻率最小值至电阻率开始加速上升之间的时间即为水泥水化反应的诱导期,诱导期的开始和结束都与氢氧化钙的生长有关.  相似文献   

17.
采用自行设计的试验装置对可再分散醋酸乙烯-乙烯共聚物乳胶粉改性水泥砂浆(EVA改性砂浆)早龄期收缩应力/应变变化规律进行了初步研究,用X射线衍射对其水化产物钙矾石(AFt)、氢氧化钙(CH)和水化铝酸钙(C_4AH_(13))进行了表征,分析了收缩应力、应变变化与EVA掺量(质量分数)、水化产物的关系.结果表明:EVA可使改性砂浆早龄期收缩应力的增长速率变缓、最大收缩应变减小,且EVA掺量为15%时效果最明显;EVA既能抑制C_4AH_(13)的生成和转化,也能抑制AFt和CH的生成,并延缓水泥砂浆水化进程;在水化3h内,EVA改性砂浆的收缩应力变化只受AFt生成量的影响,而其收缩应变变化同时受CH和AFt生成量的影响,且与CH的相关性更大.  相似文献   

18.
为研究不同矿物组成对低热硅酸盐水泥抗海水侵蚀能力的影响,阐明低热硅酸盐水泥抗海水侵蚀的机理,利用分析纯化学试剂和水泥原材料分别制备硅酸二钙单矿和水泥熟料,并将具有不同矿物组成的低热硅酸盐水泥净浆试件在人工模拟海水中浸泡28d。通过强度发展规律、物相分析和综合热分析,发现硅酸二钙和铁铝酸四钙可以稳定低热硅酸盐水泥在海水中的强度发展,并阐明了海水中复杂盐离子与水泥水化产物反应的机理,建议适当提高铝酸三钙含量以增强低热硅酸盐水泥的抗海水侵蚀能力。  相似文献   

19.
硅酸盐与磷铝酸盐复合水泥水化动力学的研究   总被引:2,自引:0,他引:2  
研究了石膏掺量为3.5%(以SO3计,质量分数,下同)、磷铝酸盐水泥熟料掺量为10%的硅酸盐与磷铝酸盐复合水泥的力学性能和水化动力学,测定了该复合水泥在不同水化时间下的Ca2 和[SiO4]4-溶出浓度、相应的电导率及pH值.研究结果表明,磷铝酸盐水泥的掺入不仅可以提高硅酸盐水泥的水化硬化速率,而且能使硅酸盐水泥的早期以及后期强度有不同程度的提高.该复合水泥水化硬化浆体的Ca2 和[SiO4]4-的相对溶出浓度、电导率及pH值均较同龄期的硅酸盐水泥低,说明该复合水泥的水化产物较为稳定,不易溶解,而且碱性较低.硅酸盐与磷铝酸盐复合水泥的水化历程与硅酸盐水泥相同,经历5个阶段,即初始期或预诱导期、诱导期、加速反应期、减速反应期和稳定期.加速反应期的水化主要由成核反应控制,而稳定期的水化主要由扩散过程控制.  相似文献   

20.
新型镁质膨胀材料对水泥浆体收缩的补偿   总被引:1,自引:0,他引:1  
主要研究了新型镁质膨胀材料对高C3S含量(质量分数为64.4%)水泥浆体收缩的补偿作用,结果表明,根据一定条件下(如养护温度、掺加粉煤灰等)水泥浆体的收缩特性来调整膨胀材料的煅烧温度和煅烧时间,控制合理的掺加量,新型镁质膨胀材料可以有效地补偿水泥浆体的收缩.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号