首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
可液化场地地铁车站结构地震破坏特性振动台试验研究   总被引:1,自引:0,他引:1  
模拟大震主、余震地震动作用,开展了石膏模型的三层三跨地铁地下车站结构地震破坏特性的振动台试验,测试与分析了可液化地基土的加速度、振动孔压、地表震陷和模型车站结构的加速度、水平向相对位移、应变、侧墙动土压力反应及其空间效应,再现了喷水冒砂、地表裂缝、震陷及模型车站结构上浮、构件裂缝及局部破损等宏观震害现象。研究结果表明:在主震作用时,地基土液化持续时间长、振动孔压消散趋势不明显,地基土的加速度放大效应降低,液化地基呈现出显著的减震与低频集中效应;余震作用时地基土振动孔压的消散较为明显;模型结构峰值加速度反应沿高度增大,侧墙动土压力反应沿高度呈中间小、两端大的分布模式;模型结构中柱的峰值应变反应最大,且中柱左右两侧的峰值应变与损伤程度沿高度呈S形分布;可液化地基土与模型车站结构的地震反应存在显著的空间效应现象。  相似文献   

2.
地下结构的外部轮廓及其对整体抗侧刚度产生明显改变的附属构筑物都将对主体的抗震性能、变形性态和破坏特征等产生显著影响。通过开展可液化地基土–地下连续墙–异跨地铁车站结构动力相互作用的大型振动台模型试验,对比分析了不同强度地震动作用下模型地基的孔隙水压力发展、加速度响应和地表震陷等动力响应规律。试验结果表明:地连墙和地下结构的存在明显减小了其周围地基的加速度和动孔压比反应,且地基液化程度不同时的影响规律存在明显差异;模型地基对地震动的低频段反应更为强烈,反应谱随地震动强度的增大逐渐向长周期移动;当输入地震动强度较小时,模型结构和场地均出现少许沉降,强地震动作用下的地基土沉陷明显,地下结构呈整体水平上浮状态;模型地基动孔压发展及其分布沿结构纵向变化较小,根据试验结果给出了具体的影响规律及其影响机理。  相似文献   

3.
可液化地基中地铁车站周围场地地震反应分析   总被引:1,自引:0,他引:1  
地基液化是地铁车站结构在地震中发生严重震害的重要威胁之一。基于对砂土液化大变形本构模型的研究,建立了可液化地基–地铁车站结构非线性静动力耦合相互作用分析模型,分析了该相互作用体系的地震反应规律。首先,对地铁车站结构周围地基的动孔隙水压力、位移和加速度的时空分布规律进行了分析,重点分析了可液化地基上车站结构上浮、周围侧向地基地表的地震沉降、车站结构周围地基的液化区分布特性及其位移矢量场特征;其次,对车站结构周围可液化地基的地震反应对地面结构的地基稳定性及其所处地震环境的影响进行了初步研究,研究成果可对控制可液化地基上地铁车站结构地基的震害及其对地面结构造成的震害影响提供科学依据和参考。  相似文献   

4.
考虑近、远场地震动作用,针对可液化场地条件下的三跨三层地铁车站结构,进行土-地下结构动力相互作用振动台模型试验,分析地铁车站结构的加速度、侧向水平位移和动应变的反应规律,研究近远场地震作用下可液化场地上地铁车站结构动力损伤特性。结果表明:不同高度处的加速度反应存在差别,结构中下部的加速度反应大于其他位置的加速度反应;比较结构侧墙和结构侧边地基土的的峰值加速度值,发现液化场地条件下结构某些部位的峰值加速度反应可能比周围场地的峰值加速度反应要大;车站结构中柱的应变反应最大,侧墙的反应次之,板的反应最小,并且底层中柱的应变反应最大值大于顶层和中层的中柱应变反应最大值。采用应变损伤度衡量结构的破坏程度,在地震动作用下车站结构底层中柱底端的损伤程度最为严重。  相似文献   

5.
水平地基液化后大变形对桩基础的影响   总被引:15,自引:0,他引:15       下载免费PDF全文
通过对震害调查结果的分析,表明(1)震动液化能够引起水平地基产生较大的侧向变形;(2)可液化水平地基中桩的水平位移的大小和方向,主要受已液化土层侧向变形的大小和方向控制;(3)可液化水平地基的侧向变形,可分为液化前较小的震动变形。液化后震动引起的大中变形以及地震后的永久侧向变形三种情形。可液化水平地基中桩基础的设计,应该考虑这三种不同工作状态下的抗震要求;(4)上部结构-桩-地基的相互作用和响应会因上述三种情况而异,有必要发展新的能够考虑可液化地基侧向变形影响的动力分析方法。  相似文献   

6.
在黄土地区地铁车站振动台试验中,测得模型体系加速度反应与位移反应,模型结构应变反应,地表沉降及土与结构间动土压力。分析了模型地基的边界效应、模型地基与结构的加速度反应规律及模型结构对地基地震反应的影响特征;归纳了不同峰值加速度及频谱特性地震动作用下,模型地基水平位移反应规律;并对模型体系地表沉降进行了分析。最后,根据现场观察及影像资料,对试验中模型地震破坏特点进行描述。结果表明:地震动向上传播时,模型地基加速度傅里叶谱低频部分增大,高频部分减小;在较大地震动下,土与结构动力作用较强,模型结构动力反应受周围土体控制;模型结构对地震动在地基中传播特性无显著影响;地震动具有一定方向性,且随着输入峰值加速度增大其方向性更加显著。研究结论可为黄土地区地铁车站、区间隧道及地下商业街等地下结构的抗震设计及相关理论研究提供可靠资料。  相似文献   

7.
以兰州某地铁车站为研究背景,开展了黄土场地具有地上结构的地铁车站结构体系大型振动台模型试验。测试并分析了模型体系的基频、加速度和水平位移反应以及模型车站的应变和侧墙处的动土压力反应等。结果表明:浅层地基土及埋置于其中的模型车站地下结构的加速度反应对地震动频谱特性具有较高的敏感性,而深层地基土及模型车站地上结构的加速度反应对地震动频谱特性敏感性较低;在土-结构动力相互作用过程中,地基土与地下结构运动方向相反,地基土对地下结构的变形起到"主动"约束和限制作用;结构地上第一层中柱底部是地铁车站的最薄弱部位;模型结构侧墙处动土压力增量在深度方向的变化规律受地震动强度及地基土弹塑性状态的影响。  相似文献   

8.
针对上覆黏土层、下部饱和砂层结构的可液化场地条件,采用2×2低承台群桩—独柱墩结构,完成了可液化场地群桩–土–桥梁结构地震相互作用振动台试验。试验表明:在小幅震动阶段孔压仅有少量积累,孔压积累主要发生在强烈振动段;孔压随震动幅值增大、持时延长而变得更高;最强烈液化作用滞后于峰值加速度时刻。砂层加速度反应受场地液化影响较大;随着砂层液化的发展,土层位移峰值时刻与输入地震波峰值时刻、土层加速度峰值时刻之间表现出明显的时滞特征,而土层位移对桩的弯矩反应起着越来越明显的作用,且液化砂层位移对桩土相互作用力影响效应已凸显;完全液化砂层的承载力并未全部丧失;无论砂层液化与否,桩与砂层加速度反应规律保持一致;地震中土层分界附近桩的加速度、弯矩出现突变。振动台试验无疑为可液化场地桥梁群桩抗震性能研究提供必要铺垫。  相似文献   

9.
饱和砂土地层中的地下结构在地震作用下可能因地基液化而发生破坏。采用动力固结两相体有限元程序DIANA SWANDYNE-II对可液化地层中地铁隧道结构的地震响应进行了模拟,并与动力离心模型试验结果对比以验证其效果。选用广义塑性模型Pastor-Zienkiewicz III模拟可液化土的动力特性,基于Biot方程的u–p形式建立有限元方程,进行饱和土动力固结的耦合计算。计算表明,该数值模型可较合理地模拟地下结构的地震反应特性,计算结果与试验现象基本相符。地基液化引起的结构附加内力及隧道上浮主要受地基液化时土水压力变化的影响,截断墙的设置可有效减轻隧道结构的上浮。  相似文献   

10.
为了研究地基液化对高层建筑结构的影响和破坏,利用室内模拟地震振动台,再现高层建筑结构倾斜大位移灾害。获取地基砂土层不同位置的液化程度,确定影响范围,分析高层建筑结构倾斜灾变过程中结构的水平位移、基频和阻尼比、振型曲线以及各部位动应变响应的变化规律,研究地基液化对高层建筑结构动力响应的影响。研究表明:随着地震波峰值加速度的不断增大,地基液化程度不断提高、液化范围不断加大;高层建筑结构水平位移与地基液化状态具有明显正相关性,结构水平位移增幅随地基超孔压增幅的增大而增大;随着地震波峰值加速度的不断增大,结构的基频逐渐下降,阻尼比逐渐升高;结构1阶振型具有弯剪型特点,试验过程中振型曲线的形状基本一致,说明结构损伤不明显,刚度变化很小;由于地基液化导致高层建筑结构倾斜灾变,结构发生应力重分布,重分布之后结构各部位应变值趋于稳定。  相似文献   

11.
文章通过三维水土耦合动-静一体有限元程序DBLEAVES对饱和砂土地基(Dr=40%)单桩基础的离心机模型试验进行模型试验相对应的原型三维有限元数值模拟和分析。对比分析小震(峰值加速度0.08g)和大震(峰值加速度0.47g)情况下的土体加速度、超静孔隙水压、沉降位移以及桩身弯矩等变化规律。其中,地基土的性质采用应力诱导各向异性的交变移动弹塑性模型模拟,基桩采用弹性梁单元模型模拟。结果表明:①超静孔隙水压会“隔断”振动波的传递,当土体接近完全液化时,土表面峰值加速度会明显小于输入波峰值加速度,而当超静孔隙水压比较小时,土表面加速度相对于输入波则可能会放大;②地震时所达到的最大超静孔隙水压比是地基土沉降量的主要因素之一,且一大部分沉降发生在震后的孔压消散期;③数值模拟与模型试验结果的对比分析表明,交变移动模型可以较好地反映土体在交变荷载下的动力响应特性,验证了所采用的DBLEAVES程序和有限元方法的有效性。  相似文献   

12.
液化场地浅埋钢筋混凝土结构物变形及 动土压力分析   总被引:1,自引:1,他引:0  
 基于多重剪切机构塑性模型和液化前缘面的有效应力分析方法,分析不同地震强度下液化场地中浅埋大断面矩形钢筋混凝土结构物变形与地震动土压力分布特征,进而探索0.85 g输入地震波条件下结构物与液化土间的相对位移差、结构物侧壁和顶底板土体的动土压力、剪切应力、有效应力和超孔隙水压力的变化规律。研究得出结构物的最大变形、弯矩和曲率值随着地震强度的加大而增大,结构物最先发生屈服变形部位位于拐角处,并逐步向周围扩展;场地发生液化模型中的结构物–液化土相互作用系数数值小于场地未发生液化模型,结构物与土体间的相对位移差值随着场地液化而剧增到一定值;作用于结构物侧壁的动土压力最大值和震后值随地震强度加大而增加,但不是简单的线性增长;结构物侧壁动土压力随着振动持续而增长,而作用于顶底板土层的剪切应力和侧壁有效应力随着土体液化而剧减。研究结论可为液化场地浅埋结构物的抗震设计提供可靠的依据和参考。  相似文献   

13.
Pile foundations are widely used to support high‐rise buildings, in which piles transmit foundation loads to soil strata with higher bearing capacity and stiffness. This process alters the dynamic characteristics of the pile–soil–structure system in seismically active areas, especially at a liquefiable site. A series of shaking table tests on liquefiable soils in pile group foundations of tall buildings were performed to evaluate the liquefaction process and dynamic responses of the pile, soil, and structure. The soil was composed of two layers: the upper layer was a clay layer and the lower layer was saturated sand. These layers were placed in a flexible container that was excited by El Centro earthquake events and Shanghai Bedrock waves at different levels. The test results indicate that the pore pressure ratio is gradually enhanced as the amplitude of the input acceleration increases. The liquefied sand has a filtering effect on the vibration with a high frequency and an amplified effect on the vibration with a low frequency. With increased excitation, contact pressure and strain amplitudes of the pile increase, whereas the peak acceleration magnification coefficient decreases. The seismic responses of a structure with pile–soil–structure interaction are generally smaller than those on a rigid foundation.  相似文献   

14.
进行了液化场地-结构体系动力相互作用大型振动台试验,对土体和桩基的加速度反应、饱和砂土层的孔压反应等进行了测试。重点阐述了土体和群桩基础的加速度地震响应特征和饱和土体的孔压发展规律,并对土体侧向变形规律进行了分析。试验研究结果表明:0.05g拍波输入时,土体和桩基对加速度反应有着明显放大作用,土体各处孔压比增长幅度不大,土体侧向位移较小;0.3g汶川地震卧龙台地震记录输入时,桩基加速度反应规律与土体反应基本一致,土体孔压比增长明显,上部土体完全液化;土体水平侧向变形较大。本文成果可为液化场地-群桩基础动力相互作用研究做对比分析和验证数值模拟工作提供参考。  相似文献   

15.
倾斜液化场地桩基地震响应离心机试验研究   总被引:2,自引:1,他引:1  
 倾斜液化场地中群桩地震响应受液化土层侧向流动和桩土相互作用影响和控制,故倾斜液化场地中桩基抗震性能问题是一个极其复杂问题。基于动态土工离心机试验来探讨考虑倾斜液化土侧向流动特点的群桩地震响应规律。试验设计不同地震强度下2个50 g典型土工离心模型试验,以研究倾斜液化场地中桩土加速度、位移、桩身弯矩和土体超孔隙水压力响应特性。试验提出倾斜饱和土层的制备方法,再现倾斜液化场地中桩基础在强震作用下的破坏程度、状态和机制,并进一步对比分析试验结果,取得较好的成果,此为倾斜液化场地桩基础的抗震设计提供可靠依据,对确保液化场地桩基础的抗震稳定性和安全性具有重要意义。  相似文献   

16.
土工格栅控制液化土体流动变形的试验研究   总被引:1,自引:0,他引:1  
陈育民  周晓智  徐君 《岩土工程学报》2017,39(10):1922-1929
液化导致的土体大变形以及侧向流动是地震引起建筑物破坏的主要原因。采用土工格栅作为主要加固材料,开展建筑物荷载作用下液化场地流动变形的振动台试验研究,考虑水平层状土工格栅、包裹状土工格栅和土工格栅+无纺布联合处理等3种加固方案对结果的影响,从超孔隙水压力发展、建筑物沉降量以及格栅应变特性等分析加固方案对液化变形的处理效果。试验表明:采用上述3种加固方案所得的相同埋深处超孔隙水压力峰值基本相等,表明土工格栅的加入基本不能改变地基的液化状态,而后期超孔隙水压力在土工格栅+无纺布联合加固方案下消散速度最快。与其它两种加固方案相比,土工格栅+无纺布联合加固方案下建筑物沉降量最小,相比未加固工况沉降量减少24%,土工格栅中间位置的应变峰值小于边缘位置的应变峰值。采用土工格栅+无纺布联合加固时,具有较大表面积的无纺布对该覆盖区域液化土体有较好的约束作用,限制了砂土颗粒的竖向移动。此外,砂土颗粒对无纺布的作用力将由土工格栅承担,这种作用力将有利于土工格栅与砂土之间的摩擦效应,进一步限制液化砂土的流动变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号