首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基坑工程对邻近地铁隧道影响的分析与对策   总被引:4,自引:0,他引:4  
上海市闸北区大宁商业中心基坑东侧围护体距离已运行地铁隧道的最小净距仅为5.45 m。本文主要介绍了该工程中为控制隧道变形采取的设计技术措施:盆式开挖配合钢管斜坡撑代替大面积支撑、地铁侧坑内被动区采用水泥土搅拌桩加固和遵循时空效应原理的设计开挖工况等。同时针对本工程设计以变形控制为主的特点,采用了三维连续介质有限元法分析了开挖所引起的环境效应,其中土体采用修正剑桥模型模拟。同时采取了不同计算方案对比分析了采用抽条开挖的有效性,为设计和施工提供了有益的参考。  相似文献   

2.
城市轨道交通的快速发展,使新建车站或隧道越来越多的临近或穿越既有线路.为解决新建地铁车站基坑施工对先行施工隧道的影响及对策,依托深圳地铁5号线太安站和相邻区间隧道工程,采用FLAC有限差分软件,计算分析基坑开挖过程中隧道和基坑围护结构的变形情况及相应的对策.研究结果表明:为有效控制邻近隧道的位移,应加强控制基坑坑外土体的水平位移,设计中应对临近隧道段车站围护结构进行加强;基坑开挖过程中应对隧道进行临时加固.  相似文献   

3.
杭州地铁秋涛路车站深基坑信息化施工监测分析   总被引:8,自引:0,他引:8       下载免费PDF全文
通过对杭州地铁秋涛路车站深基坑工程东区施工中围护桩水平位移、钢支撑轴力、地表沉降和地下水位等监测数据进行分析,得出了一些有价值的结论。实测表明:桩体水平位移能直接反映围护结构的变形特性,是评价围护结构安全状况的重要指标,桩体的侧向变形主要是由土方开挖所引起,与开挖后墙面暴露时间长短相关;钢支撑的轴力随开挖深度增加而增加,其大小变化与开挖方式、开挖速度、气温以及下层支撑的拆除有关;基坑东侧的地表沉降曲线呈抛物线形分布,基坑南侧的地表沉降曲线呈三角形分布;坑外地下水位的变化可反映围护结构的止水效果。  相似文献   

4.
上海外滩596地块超深基坑紧邻地铁9号线区间隧道及一系列管线和建筑物。为控制基坑施工对周边环境(尤其地铁隧道)的影响,本项目设计采取分坑顺作、两墙合一地下连续墙、钢支撑轴力补偿体系、被动区加固、抽条分块开挖等系列措施。实测结果表明,远离地铁侧的地下连续墙最大变形为45.6 mm,邻近地铁侧地下连续墙最大变形为17.2 mm,邻近地铁隧道的最大隆起量为12.9 mm。所采用的设计方案满足了地铁的变形控制要求。  相似文献   

5.
基坑复合土钉墙转角处有明显的空间效应,受力变形较小,对支护结构有利,但不清楚转角定量的有利影响范围,目前设计中仍按照与基坑中部一样保守设计,为在此范围内降低土钉用量,避免保守设计,对水泥土搅拌桩复合土钉支护结构建立了全尺寸整体三维有限元模型,这种模型包含基坑的转角,能考虑基坑的空间效应,通过建立接触面单元,能考虑土体和搅拌桩、土体和土钉的相互作用,量化分析了基坑转角对支护结构受力和变形的有利影响范围,计算结果表明,基坑转角对开挖面水平位移、地表沉降、坑底隆起、土钉轴力的有利影响范围分别约为1.3、1、1、1.2倍的开挖深度。经与实际工程现场实测值对比,验证了该模型分析结果的可靠性,同时分析结果优于平面二维和局部三维有限元模型,结论为复合土钉支护结构的优化设计和安全施工提供了理论依据和研究方法。  相似文献   

6.
为了解“先隧后站”法先期隧道施工产生的土体扰动对后期地铁车站基坑开挖的影响规律,以厦门地铁2号线高林站工程为依托,根据工程经验考虑4种地层损失率η,通过数值模拟先盾构隧道后明挖法扩建地铁车站基坑开挖过程,研究基坑开挖破除隧道前后基坑变形及围护墙内力变化规律。计算结果表明:地表沉降和墙体侧移及内力分布规律基本不变,但极值存在一定变化;对于地表沉降极值η为0.5%、1%和2%时的比无隧道时(η=0)分别增大15.8%、12.6%和10.7%;对于围护墙侧移,η从0.5%增至2%,极值增幅约4.1%;先期盾构隧道施工力学效应不利于后期基坑开挖。为克服这种不利效应,现场提出了一套基坑土方开挖及管片拆除的施工方案,实践表明采取的方案可靠,基坑安全稳定。  相似文献   

7.
介方 《住宅科技》2010,30(8):26-30
上海闸北某基坑工程邻近高级住宅楼,东临地铁线隧道,基坑开挖难度大。采用包括钻孔灌注桩加水泥土搅拌桩,地下连续墙组合围护,深井降水等措施,成功地完成了该基坑的施工。文章对土方的支护、开挖和监测作了探讨,并提出设计及施工中的一些体会和建议。  相似文献   

8.
目前基坑开挖对邻近隧道的影响研究主要集中于软土地层,在土岩组合地层当中研究较少。以重庆临江门开挖深度近30 m、邻近隧道的岩质深基坑工程为例,运用数值模拟方法与工程现场监测成果对基坑开挖所造成的影响进行分析研究。研究结果表明:岩质基坑变形总体较小,支护桩加分阶预留岩墙作为围护体系比较有效,支护结构变形主要集中于土层部分;有邻近隧道时,拱圈所对应支护桩弯矩比无隧道时要大,直墙段所对应支护桩弯矩比无隧道时要小;由于受连续介质及隧道几何形态的影响,隧道会改变位移场传递的方向,并且竖直方向改变大于水平方向,隧道主要表现为横向变形。衬砌拱顶、左拱脚、左墙中的弯矩明显增加,隧道具有明显的偏压效应。  相似文献   

9.
论文以重庆某轻轨车站区间隧道明暗挖工程为例,提出隧道明暗挖分界面处支护桩结构的物理概化模型,采用数值模拟并结合现场监测结果,对隧道明暗挖分界面处基坑支护桩施工力学效应进行研究。分析结果表明:支护桩桩间距、桩截面尺寸、桩截面形状对支护桩力学效应的影响中,桩截面尺寸对支护桩桩身变形及力学效应影响最为显著;隧道洞径、埋深及走向变化对支护桩力学效应的影响中,洞径对支护桩变形影响较大;先开挖隧道后开挖基坑能有效减少坡顶沉降及侧向位移,同时桩身弯矩剪力值也较小;支护桩施工后设置拱形连梁可以有效增强余桩的支护作用。  相似文献   

10.
 控制基坑变形已成为深基坑工程中的核心问题,而坑底开挖施工阶段围护墙体的变形在基坑开挖施工中占有相当的比重。结合上海轨道交通某在建地铁车站基坑开挖时的变形监测数据及跟踪工况,对不同坑底土体暴露时间所对应的围护墙体变形情况进行了对比分析。分析结果表明,坑底土体暴露时间对土体暴露期间及整个坑底施工阶段的基坑变形有着显著影响,随着坑底土体暴露时间的延长,坑底施工阶段墙体变形量可达总变形的30%,缩短土体暴露时间是控制坑底施工阶段围护墙变形的关键。同时,素混凝土垫层对围护墙体变形具有一定的支撑效应,在一定程度上能起到类似结构底板的作用。施工中应尽快完成混凝土垫层的浇筑工作,尽早发挥垫层对围护墙体的支撑作用。另外,垫层对墙体的支撑效果与其自身的平直度等因素有很大关系,破坏垫层的整体性,则会削弱其对围护墙体的支撑作用。提出对坑底施工阶段基坑变形的控制措施,尽可能缩短坑底土体暴露时间及整个坑底阶段的施工时间,提高垫层的整体性,加快底板施工,尽早形成底板混凝土对围护墙体的支撑作用,从而控制开挖阶段的基坑变形,对其他深基坑工程具有一定的参考价值。  相似文献   

11.
针对某采用咬合桩围护方案的邻近高填土基坑工程进行分析,当咬合桩作为围护桩时,可采用等效刚度法计算围护桩的桩身变形;作为隔离桩使用时,忽略素混凝土桩的作用,仅考虑钢筋混凝土桩的抗弯能力。现场实测表明,邻近高填土基坑工程在开挖时,咬合桩明显地降低了基坑开挖对紧邻高填土的扰动,满足了高填土自身的稳定,保证基坑工程在高填土作用下的安全。而咬合桩作为一种新型排桩围护结构,也能够起到很好的应力隔离作用,有效地分担了邻近超载的影响,确保了高填土的稳定和基坑工程安全。  相似文献   

12.
临近基坑开挖引起复合地基CFG桩变形和内力改变,现有理论缺乏对该问题的研究。通过开展离心模型试验,对临近基坑开挖条件下,复合地基变形、CFG桩内力和变形、土压力等分布和变化规律进行深入分析。结果表明:开挖引起CFG桩弯矩增大,近基坑桩增幅明显|开挖引起桩土不同步沉降,导致CFG桩上刺入褥垫层,桩受到褥垫层的“嵌固拉结”作用,同时远基坑桩、褥垫层、加载气囊一起提供了“摩擦拉结”作用,从而在近基坑桩上出现负弯矩|而远基坑处不均匀沉降小,“嵌固拉结”作用小,且“摩擦拉结”作用是利于正弯矩产生,桩上未出现负弯矩|开挖引起支护背后土压力分为增长区和减小区两部分,在上部土体中,土体卸荷,土压力减小,而下部土体受支护挤压,土压力有所增大|开挖引起地表沉降呈指数形式,临近基坑地表沉降最大,在显著变形区域内,支护水平位移基本呈直线形式,各阶段最大水平位移均出现在支护顶端|开挖引起的CFG桩水平变形大小和范围随距基坑边距离的增大而减小。  相似文献   

13.
结合福建典型的一个软土基坑中水泥搅拌桩与土钉墙组合支护的成功案例,探讨水泥搅拌桩与土钉墙组合支护在软土基坑中的作用机理及应用。研究结果表明,水泥搅拌桩与土钉墙组合支护技术可充分发挥基本型土钉墙以及水泥土搅拌桩的优点,克服单一使用的不足,结果可为类似软土基坑工程提供参考。  相似文献   

14.
姜兆华  张永兴  蔡宇  商克俭 《工业建筑》2012,42(7):95-99,90
以重庆某开挖深度近30 m、周围存在邻近隧道的岩质深基坑工程为例,介绍了支护桩加锚索、支护桩加分阶预留岩墙两种围护体系及基坑监测方案,并结合数值模拟对主要监测成果进行分析。分析结果表明:支护桩加分阶预留岩墙作为邻近隧道岩质基坑围护体系非常有效,桩身变形主要集中于土层部分,对坡顶部位进行加固,可有效提高边坡整体稳定性;邻近隧道会改变周围地表最大沉降点位置,其位置与隧道拱顶相对应;由于受连续介质及隧道几何形态的影响,围岩会改变位移场传递的方向,隧道主要表现为横向变形。  相似文献   

15.
张培印  李顺群 《工程勘察》2014,(5):16-20,25
通过ABAQUS有限元模拟软件分别建立了考虑渗流影响和不考虑渗流影响的基坑开挖非稳定渗流有限元模型,采用修正剑桥模型并考虑支护桩与土体的接触作用,研究了支护结构侧向变形、坑外地表变形以及坑底隆起量随着基坑开挖的变化规律。然后将两个模型的支护桩及基坑变形性状进行对比,发现渗流—应力耦合作用下的基坑变形大于非耦合情况下的变形,说明考虑渗流应力耦合的数值模拟方法能够较好地模拟基坑降水引起的支护结构及基坑土体变形特征。最后,为控制基坑变形和保护周围环境,在考虑渗流—应力耦合作用的基础上又研究了预留反压土对支护结构的作用及对基坑变形的影响,结果表明,基坑内侧预留反压土堤可有效降低基坑及支护结构的变形。  相似文献   

16.
过江隧道深基坑中SMW工法加钢支撑围护结构现场监测分析   总被引:1,自引:0,他引:1  
 杭州庆春路过江隧道是“钱江第一隧”,其江北岸基坑是典型的粉性土基坑,最大开挖深度16 m,主要采用SMW工法(劲性水泥土搅拌连续墙)加钢支撑的围护结构体系,围护桩最长达27 m。基坑开挖过程监测数据表明:围护桩的最大水平位移与开挖深度及时间密切相关,支撑的架设及内部结构能很好限制桩体变形;气温、降雨等外界条件的变化对支撑轴力的影响较大,临近基坑支撑的拆除也会产生重大影响;钢支撑轴力均未达到设计值,应对设计方案进行优化;基坑降水及由此引发的渗流会改变土体有效应力,是基坑周围地表沉降的主要原因,同时相邻基坑的施工也会产生一定影响;地下水位的变化能很好反应围护桩的止水效果,可作为判断基坑是否出现漏水的指标。对于粉性土基坑,有效控制基坑周围水的变化,对保持基坑安全有重要意义。  相似文献   

17.
王文辉 《福建建筑》2014,(11):97-100
以福州某设有坑中坑的软土深基坑工程为研究对象,采用土工有限元分析技术,考虑桩土相互作用,建立基坑开挖模型,土体采用HS模型模拟,分析围护桩水平位移变化特性,研究坑中坑开挖对外坑基坑变形的影响。通过与实际监测资料的对比分析,表明了坑中坑的存在对外坑围护结构的变形有很大影响,数值模拟计算方法在坑中坑工程中有良好适用性,对于类似工程具有指导意义。  相似文献   

18.
基坑中土的应力路径与强度指标以及关于水的一些问题   总被引:1,自引:1,他引:0  
 基坑开挖是在原状土层中进行的,其地基土的应力路径既不同于常规挡土墙中土的应力路径,也不同于室内常规三轴压缩试验中试样的应力路径。基坑工程中,支挡结构物前、后土体的平均主应力或者某些方向的主应力常常是减少的,对于饱和黏性土的固结不排水三轴试验,可能产生负的超静孔隙水压力,从而会影响土的抗剪强度指标。本文指出,对于黏性土中的基坑,在近期施加的墙后地面超载q,以及欠固结土地基的情况下,使用固结不排水(或固结快剪)强度指标计算土压力与进行稳定分析是偏于不安全的;同时指出,重力式水泥土墙的抗滑移和抗倾覆稳定验算,以及用瑞典圆弧法进行整体稳定验算时,对于饱和黏性土,如使用固结不排水强度指标,其抗力部分中的自重应按浮重度计算。结合对《建筑基坑支护技术规程》(JGJ 120-201?)报批稿进行的一些讨论,分析在基坑支挡结构计算中水压力的作用,提出地基土为粉土时,水土压力分算还是合算取决于其下土层的性质。  相似文献   

19.
 以上海地区一紧邻地铁枢纽的超深基坑工程为分析对象,考虑土体的小应变刚度特性,建立地铁区间隧道和邻近基坑的二维有限元分析模型,探讨土体小应变条件下超深基坑的变形特性。算例分析表明,考虑土体小应变刚度特性可以显著减小超深基坑的变形,计算结果与实际情况更为吻合。对于紧邻地铁枢纽的超深基坑,开挖顺序对于基坑变形也有着显著影响,在同样的计算模型下,先开挖大基坑再开挖紧邻地铁枢纽的小基坑,可以明显地减小超深基坑的变形,这与上海地区已有的工程实践经验是一致的。所获得的结论对于紧邻地铁枢纽的深基坑工程设计与施工具有重要参考价值。  相似文献   

20.
王新 《中国市政工程》2012,(2):25-27,35,98
应用平面有限元软件对上海某地道下穿轨道交通11号线基坑施工进行了模拟分析。基坑开挖造成的土体侧向卸载,影响着临近群桩基础的安全。分析结果表明:临近桩基侧移与围护桩变形有一定的相关性,发生最大侧移的地方均位于基坑开挖面处,而围护桩弯矩的发展变化跟支撑位置和刚度有着直接关系;基坑开挖造成的侧向卸载作用对临近桩基的影响明显大于对承台的影响;不考虑桩基侧移的情况下,侧向卸载造成摩擦群桩承载力降低量可忽略;围护结构支护状态的有效性对减少临近桩基侧移和保持群桩承载力起到关键作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号