首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了改善水泥固化软土存在的不足,采用聚丙烯纤维-水泥对广州南沙软土进行固化,分析探讨了纤维水泥固化土的受压破坏方式以及纤维掺量、纤维长度、水泥掺量、龄期对纤维水泥固化土无侧限抗压强度的影响。试验结果表明:在水泥土中掺入纤维能在一定程度上提高其无侧限抗压强度,且在一定范围内,无侧限抗压强度随纤维掺量和纤维长度的增加而增大;纤维水泥土中水泥的最优掺量为12%;纤维水泥土的无侧限抗压强度随着龄期的增长而增大,并且早期强度增长较快,后期增长较慢并趋于稳定;纤维能增加水泥土的抗拉强度,减少水泥土试样破坏时的裂缝宽度和数量,改善它们的脆性破坏形式。  相似文献   

2.
研究了不同掺量短切玄武岩纤维对轻骨料混凝土的抗压强度、劈裂抗拉强度和抗折强度三种力学性能的影响。结果表明,掺入玄武岩纤维的轻骨料混凝土的7d抗压强度随纤维掺量的增加而增大,但对28d抗压强度没有显著影响,当纤维掺量超过0.15%时,28d抗压强度呈下降发展趋势;随玄武岩纤维掺量的增加,轻骨料混凝土的劈裂抗拉强度及抗折强度均呈先增加后降低的发展趋势,当纤维掺量为0.15%时,上述两种强度指标均取得最大值;玄武岩纤维掺入轻骨料混凝土中能够改善其脆性,增加其韧性,改善轻骨料混凝土的受压破坏形态和抗折破坏形态。  相似文献   

3.
《砖瓦》2015,(10)
将一定量的剑麻纤维掺入污泥中,并加入适量的水泥,研究剑麻纤维对污泥固化体强度特性的影响。将制备好的试样养护数天后,对试样开展无侧限抗压强度试验。试验确定了无侧限抗压强度与剑麻纤维掺入量的关系曲线,试验测得,0%,10%,15%,20%,30%的剑麻纤维含量的污泥固化体的无侧限抗压强度值。试验结果显示,在一定范围内掺入剑麻纤维,污泥固化体的无侧限抗压强度得到了提高,过量的剑麻纤维导致污泥固化体的抗压强度下降。  相似文献   

4.
将玄武岩纤维作为外掺材料掺入水泥固化风积砂中,对不同水泥掺量及玄武岩纤维掺量的水泥固化风积砂进行无侧限抗压强度试验研究。结果表明,在水泥固化风积砂中掺入玄武岩纤维后,玄武岩纤维可在水泥固化风积砂中均匀分布,形成一种良好的相互交错的支撑体系;掺入玄武岩纤维可以提高试件强度,且在纤维含量为0.5%时试件的抗压强度最大;随着水泥掺量的增加和龄期的增长,掺纤维水泥固化风积砂的抗压强度逐渐增加。  相似文献   

5.
针对自密实轻骨料混凝土易开裂、脆性大的问题,采用掺入预先处理的剑麻纤维来提高自密实轻骨料混凝土的韧性及抗裂性能。控制剑麻纤维掺量,单一改变剑麻纤维长度,研究剑麻纤维长度对自密实轻骨料混凝土容重、流动扩展度、抗压强度、劈裂抗拉强度及弹性模量的影响。试验结果表明:剑麻纤维的长短对自密实轻骨料混凝土的容重无影响,但剑麻纤维长度增加,自密实轻骨料混凝土流动扩展度和弹性模量降低,抗压强度和劈裂抗拉强度先增加后降低,其中劈裂抗拉强度最大提升幅度达45.3%。  相似文献   

6.
刘雁宁  张涛  李杉 《混凝土》2022,(1):112-115
对混掺聚乙烯醇纤维(PVA)与12 mm两端直勾型精细钢纤维的水泥基复合材料进行立方体抗压和哑铃试件轴向拉伸试验,分析纤维掺量对混掺纤维水泥基复合材料抗压、抗拉强度和韧性的影响规律。结果表明:混掺精细钢纤维可以提高水泥基复合材料的立方体抗压强度、抗拉强度和韧性;随着精细钢纤维的增加,其抗压强度、抗拉强度和极限拉应变呈先增大后降低的趋势,当精细钢纤维掺量为1.2%时,28 d立方体抗压强度平均值比单掺PVA纤维提高了61.9%;当精细钢纤维掺量为0.8%时,28 d抗拉强度和极限拉应变分别比单掺PVA纤维提高了56.9%和240%。  相似文献   

7.
研究了碱激发剂浓度(2%、5%、8%)和再生粗骨料取代率(0、25%、50%、75%、100%)对PVA纤维混凝土坍落度、抗压强度、劈裂抗拉强度和轴心抗压强度的影响,建立了碱激发再生骨料纤维混凝土的力学指标换算式。结果表明:随着再生粗骨料取代率和碱激发剂浓度的增加,混凝土拌合物的坍落度降低;试件的抗压强度、劈裂抗拉强度和轴心抗压强度均随着再生粗骨料取代率的增加而减小,随着碱激发剂浓度的增加而增大;建立的抗压强度分别与劈裂抗拉强度和轴心抗压强度的换算式具有较高的拟合精度。  相似文献   

8.
为了考察固化剂种类对寒冷地区脱水污泥固化效果,分别对12种固化剂在不同养护龄期(7d,14d,21d)下污泥固化体的含水率和无侧限抗压强度进行了研究。结果表明,随着养护龄期的增加,污泥固化体无侧限抗压强度增加,含水率降低。以快速降低污泥固化体的含水率为目标:龄期7d+J固化剂,固化体含水率最低为6.89%;龄期14d+I固化剂,固化体含水率最低为4.86%;龄期21d+B固化剂,固化体含水率最低为2.27%。以快速增加污泥固化体的无侧限抗压强度为目标:龄期7d+K固化剂,固化体无侧限抗压强度为600.36kPa;龄期14d+I固化剂,固化体无侧限抗压强度为721.23kPa;龄期21d时+I固化剂,固化体无侧限抗压强度为834.28kPa。分别考察了养护龄期7d时12种固化剂制成固化体的重金属浸出,结果均低于国家标准。  相似文献   

9.
微生物诱导方解石沉积(MICP)技术是一种新型土体加固措施,大量的研究表明,土体加固强化的同时也使得土体破坏呈现明显脆性。为了改善微生物固化紫色土的脆性破坏模式,采用纤维加筋与微生物固化相结合的加固方法,将质量分数为0.4%、0.6%、0.8%的纤维与紫色土混合,然后采用巨大芽孢杆菌和钙盐溶液对土样进行不同灌浆次数的固化试验(3次、5次、7次、9次)。通过无侧限压缩试验测定试样抗压强度,洗酸法试验测定试样碳酸钙含量,烘干法测定试样干密度,结果表明:(1)在微生物固化紫色土中掺入纤维,能显著提高试样固化后的无侧限抗压强度和峰值强度对应的轴向应变,改善了土体破坏时的韧性;(2)纤维掺量影响微生物固化紫色土的力学性质,其强度随纤维掺量总体上呈先增大后减小的趋势,最优纤维掺量为0.6%;(3)随着固化时间增加,试样的碳酸钙生成量和干密度逐级增加,强度与碳酸钙生成量呈正相关且有效碳酸钙沉积越来越少,强度趋于稳定;(4)纤维加筋可以提高碳酸钙沉积的效率和产量,土样内生成的碳酸钙对纤维加筋效果具有强化作用。研究成果可以为纤维加筋与MICP固化相结合的土体加固技术应用提供指导和参考。  相似文献   

10.
为提升土遗址注浆料的力学性能,以椰壳纤维掺和糯米浆、烧料礓石以及黄土改性注浆料为研究对象,研究了椰壳纤维长度和掺量(质量分数)对土遗址注浆料流动性、收缩性、抗压强度和抗折强度的影响.结果表明:椰壳纤维的掺量和长度越大,浆体的流动性越低,而椰壳纤维的长度与浆体的收缩率无明显相关性;椰壳纤维良好的桥接能力可以有效提高浆体固化后的抗压强度、抗折强度和延性;椰壳纤维的长度和掺量均存在最优值,建议最优配比为纤维长度6 mm、掺量0.5%~0.6%,此时浆体固化后的抗压强度、抗折强度分别提升49.09%和32.08%;过多、过长的椰壳纤维易发生弯折、团聚,导致浆体的流动性和强度大幅降低.  相似文献   

11.
《砖瓦》2017,(1)
针对固化污泥开裂强度差的特性,以生石灰、水泥、黏土及聚丙烯纤维为补强材料,对市政污泥进行固化研究,来探索黏土及聚丙烯纤维对固化体强度的增强作用。结果表明:污泥固化体的前期抗剪强度和抗压强度在养护过程中虽有增加,但是增加并不明显,无侧限抗压呈现剪胀破坏,后期过程中抗剪强度和抗压强度均大幅度增加,呈现纤维含量越高,固化体的强度越高的规律,无侧限抗压破坏以剪切破坏为主,成45°破裂角。  相似文献   

12.
研究了素混凝土、粉煤灰混凝土、层布式混杂纤维混凝土及混杂纤维混凝土在14d、28 d、56 d的抗压强度和劈裂强度。结果表明:粉煤灰会降低混凝土的早期强度但能增加混凝土的和易性,掺30%粉煤灰的聚丙烯纤维混凝土在28 d的抗压强度比素混凝土降低了10%,劈裂强度提高了3%。掺30%粉煤灰的混杂纤维混凝土在28 d的抗压强度比素混凝土提高了4%,劈裂强度提高了10%。聚丙烯纤维和钢纤维的加入可以明显改善混凝土的脆性,提高混凝土的劈裂强度,若两种纤维混杂掺加改善混凝土脆性效果更明显。  相似文献   

13.
《工业建筑》2021,51(7):151-155
通过制备8种不同纤维掺量的聚丙烯纤维再生砖混凝土(PFRB混凝土)进行单因素试验,分析纤维掺量对其力学性能(立方体抗压强度、轴心抗压强度和劈裂抗拉强度)的影响,得到了立方体抗压强度和轴心抗压强度、立方体抗压强度和劈裂抗拉强度之间的关系式,并建立了不同纤维掺量下PFRB混凝土受压应力-应变全曲线方程。试验发现:随着纤维掺量增大,PFRB混凝土的轴心抗压强度、立方体抗压强度和劈裂抗拉强度均先增加后降低,并且都在纤维掺量为0.1%时达到最大。  相似文献   

14.
微生物固化能有效提高砂土的强度,但同样会导致土体破坏时呈现明显的脆性。为了平衡微生物固化砂土脆性破坏的不利影响,提出纤维加筋与微生物固化相结合的改性方法,即将质量分数为0%,0.05%,0.15%,0.25%和0.30%的聚丙烯纤维与石英砂均匀混合,然后基于微生物诱导碳酸钙沉积(MICP)技术对土样进行固化,并开展了一系列无侧限抗压试验,同时采用酸洗法测定了各组试样中的碳酸钙含量,进一步分析了试样的微观结构及纤维–土颗粒之间的界面作用特征。结果表明:①在微生物固化砂土中掺入纤维,能极大提高土样的无侧限抗压强度和残余强度,并能显著改善土样破坏时的韧性;②纤维掺量对微生物固化砂土的力学特性有重要影响,无侧限抗压强度随纤维掺量总体上呈先增加后减小的趋势,最优纤维掺量为0.15%,峰后残余强度与纤维掺量呈单调正相关关系;③纤维加筋使微生物固化砂土的峰后应力–应变曲线呈阶梯式下降模式,局部存在波浪式起伏特征;④纤维加筋能够提高微生物诱导碳酸钙的沉积效率和产量,与此同时,碳酸钙的胶结作用对纤维加筋效果具有促进作用。纤维加筋技术与MICP技术相结合能够实现优势互补,对提高工程结构的安全性与稳定性具有积极意义。  相似文献   

15.
为研究玻璃纤维对泡沫轻质混凝土力学性能的影响,对浇筑密度为700 kg/m3的泡沫轻质混凝土掺加4组不同长度、不同含量的耐碱玻璃纤维后,开展压缩试验、劈裂抗拉试验、抗折强度试验(三点式),并对数据整理分析。研究结果表明:随着纤维含量的增加,4组纤维泡沫轻质混凝土的无侧限抗压强度、劈裂抗拉强度和抗折强度均呈现先增加后减小的现象;掺加玻璃纤维对泡沫轻质混凝土抗折强度提高效果最优,劈裂抗拉强度次之,无侧限抗压强度最弱;掺加纤维前后,泡沫轻质混凝土均表现为明显的脆性,但掺加纤维可明显增强泡沫轻质混凝土的韧性。玻璃纤维的掺加对抗折强度提高效果最优,劈裂抗拉强度次之,无侧限抗压强度最弱。  相似文献   

16.
混凝土具有抗压强度高,抗拉强度低的特点,玄武岩纤维的掺入能够显著提高其抗拉强度,提高混凝土的综合力学性能。通过改变纤维的种类、长度、掺量,对比纤维混凝土与素混凝土的各项力学性能。试验结果表明:20 mm长(长径比为1 538.46)、掺量为3 kg/m3的玄武岩纤维掺入时,与素混凝土相比,抗压、抗拉、抗折性能分别增加了33%、23%、40%,具有显著的增强效果;随着纤维长度与掺量的增加,纤维混凝土力学性能下降,当玄武岩纤维掺量为12 kg/m3时,抗压强度增加了5%,抗拉和抗折强度降低了4%和8%。扫描电子显微镜扫描结果表明:玄武岩纤维的掺入能够降低混凝土孔隙率和初始裂隙;同时玄武岩纤维能够传递荷载,使应力均匀分布,控制裂隙发育。玄武岩纤维能够显著增强混凝土的抗拉强度,具有良好的效果。通过对玄武岩纤维掺量的控制,可以最大程度地改善混凝土的力学性能。  相似文献   

17.
研究了不同掺量PVA纤维对100 MPa超高强混凝土立方体抗压强度、轴心抗压强度、劈裂抗拉强度、抗折强度的影响,并结合扫描电镜,从微观上分析了PVA纤维对超高强混凝土的影响机理。研究结果表明:随着PVA纤维掺量的增加,纤维混凝土的立方体抗压强度和轴心抗压强度均降低,抗折强度和抗拉强度均有所上升。综合各项力学性能,在本试验范围内PVA纤维最优掺量为0.2%。  相似文献   

18.
通过测试掺入纤维的早强型支座砂浆的抗压强度、抗折强度、劈裂抗拉强度、弹性模量和韧性指数,研究了混杂纤维对早强型支座砂浆的增韧效果.结果表明:掺入纤维可以提高砂浆的抗压强度,显著提高了砂浆的抗折强度、劈裂抗拉强度和弹性模量.混杂纤维的最佳掺入比例为0.6%钢纤维+0.2%玻璃纤维+0.2%聚丙烯纤维,使砂浆28 d的抗压强度、抗折强度、劈裂抗拉强度和弹性模量分别提高7%、68%、44%和53%,压折比从空白样的6.35降低到4.03,大大提高了砂浆的韧性指数,增强了砂浆的韧性.  相似文献   

19.
通过开展无侧限抗压强度(UCS)和扫描电子显微镜试验,研究了水泥掺量、有机质含量和pH值对超高含水率泥炭土固化强度的影响.结果表明:随着水泥掺量的增加,固化泥炭土的破坏模式从塑性破坏转为脆性破坏;水泥掺量从10%增加到30%后,固化泥炭土的28 d UCS值增加了161%~485%;泥炭土含水率增加1倍后,固化泥炭土的28 d UCS值降低了42%~79%;相比于pH值为5.5的固化泥炭土,pH值为3.5和7.0固化泥炭土的UCS值降幅、增幅分别为10%~46%和8%~38%;基于固化泥炭土的UCS值,提出了超高含水率泥炭土的水泥固化配比,可以为类似工程提供一定的理论指导.  相似文献   

20.
研究了剑麻纤维活性粉末混凝土的流动度和力学性能,并在试验的基础上,就剑麻纤维对活性粉末混凝土延性和脆性的改善效果进行了量化计算。结果表明,随着剑麻纤维掺量从0增加到1.6%,活性粉末混凝土的流动度、抗压强度和抗折强度分别降低了36%、9%和13%;剑麻纤维的掺入使得混凝土的跨中位移和开口位移极限值分别增加了47%和42%,断裂能和延性指数分别提高了19%和35%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号