首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
以南昌市地铁某盾构区间隧道近距离侧穿高层建筑物为依托,采用有限元计算和现场监测相结合的方法,对新建隧道侧穿邻近建筑物过程中所引起邻近建筑物沉降、倾斜以及桩基础变形进行了深入研究,分析了盾构施工扰动对建筑物及基础结构的影响规律。结果表明:盾构施工对建筑物的影响具有滞后效应,并且呈区域性,盾构侧穿建筑物过程中,建筑物测点变形在盾构开挖面到达20 m后达到最大,对建筑物影响范围约为建筑物前后30 m;桩基础变形与距盾构推进面的距离有关,距离盾构推进面越近的基础桩变形越大,而当距盾构推进面超过一定距离时,影响并不明显。该研究数值模拟与现场实测的规律基本一致,表明有限元模拟计算方法预测盾构施工对邻近建筑的影响具有指导意义。  相似文献   

2.
以京津城际延伸线天津—于家堡盾构隧道为背景,采用数值模拟和现场监测相结合的方法,对新建盾构隧道侧穿邻近不同形式基础的建筑物产生的地面沉降、建筑物差异沉降进行深入研究,分析盾构到达建筑物之前、侧穿过程及离开后3个阶段沉降变化规律,分别模拟了加固前后地面沉降及差异沉降变化情况,结果表明,建筑物靠近隧道一侧沉降明显,产生沉降最大的阶段为盾构通过建筑物阶段,且无论在累积沉降还是在差异沉降方面浅基础建筑受到的影响要大于深基础建筑,同时加固方案能大大减小地面沉降及差异沉降。从加固后的数值模拟计算结果与现场监测情况来看,两者所反映的规律是一致的,验证了FLAC3D模拟盾构施工对沿线建筑物沉降影响是可靠的。  相似文献   

3.
富水软弱地层盾构掘进引起邻近砌体建筑物沉降研究   总被引:1,自引:0,他引:1  
《土工基础》2016,(2):164-167
以苏州地铁4号线某区间隧道下穿一砌体结构建筑物为研究对象,对右线隧道(先掘进)、左线隧道(后掘进)地表和建筑物测点历时沉降及建筑物倾斜进行分析,得出富水软弱地层盾构施工对邻近砌体结构建筑物的影响规律。结果表明:盾构刀盘距测点约18~5m时,测点会有超前沉降约-2mm,距测点约5~0m时测点上隆约0.5~1mm,盾构到达并通过测点时沉降发展较快,盾构通过后1~2天沉降趋于稳定;富水软弱土体经扰动后沉降更不易控制;盾构停机会导致地表和建筑物沉降增加;砌体结构建筑物整体性差,盾构下穿砌体结构建筑物易产生较大的不均匀沉降,且侧穿引起建筑物倾斜较正下穿大。  相似文献   

4.
文章以成都地铁9号线一期工程5标为工程背景,利用数值模拟软件建立了三维实体数值模型,对暗挖隧道上穿既有盾构隧道的影响进行了研究。选取暗挖隧道上穿既有盾构隧道的重叠断面处作为监测断面,对隧道开挖所引起的地表位移、盾构隧道的位移及盾构隧道结构于重叠处的竖向应力进行了分析,研究结果表明:(1)地表沉降最大值为18.1 mm,位于重叠断面中间区域;(2)在上穿隧道开挖完成后,引起两侧较远的土体略向上隆起,而导致左线盾构隧道右侧和右线盾构隧道左侧拱腰位移稍比另一侧大;(3)矿山法隧道的开挖会导致两条已经开挖完毕的盾构隧道有所上浮,上浮最大距离为右线隧道的7.4 mm,两条盾构隧道的上浮最大位置都位于重叠断面处;(4)矿山法隧道贯通后,重叠断面处隧道结构均受压,最大不超过6.5 MPa。  相似文献   

5.
李淼 《工程勘察》2009,(6):30-33
本文以盾构隧道施工引起的地面沉降为对象,研究邻近地表建筑物的存在对其发生发展的影响。以具体工程为依托,以实际工程监测和数据分析为主要手段,研究得出:在有邻近地表建筑物存在时,地表沉降曲线形状与无建筑物存在时相似,均符合高斯曲线的形式;区别在于有建筑物存在时,地表沉降曲线的峰值要比无建筑物存在时小,曲线的反弯点离隧道轴线的距离要比无建筑物存在时远;说明了地表建筑物的存在以及建筑物基础与地基相互作用提高了盾构隧道穿越地基土层的刚度,对盾构隧道引起的地表沉降有控制作用。在盾构隧道施工及监测的过程中,可依据该特点合理布设有无地表建筑物存在情况下的监测测点,并对盾构隧道引起的建筑物及地标开裂现象做出合理的预测。  相似文献   

6.
随着城市地铁进入大规模建设阶段,地铁隧道将侧穿众多基础形式不同的既有建筑物,为了确保建筑物的安全使用及地铁的正常施工,需要在地铁隧道穿越建筑物地基基础施工前对其进行安全性评估。本文结合北京地铁十号线二期盾构隧道侧穿某筏板基础建筑物的工程实例,通过对建筑物现状调查与检测,对建筑物结构体系、倾斜及沉降现状进行评价;利用FLAC3D软件进行数值计算,研究盾构到达建筑物前、通过及离开建筑物三个阶段的地表横向及纵向变形规律;最后综合建筑物地基基础已发生变形和盾构施工将产生的基础附加变形,依据规范提出该建筑物地基基础变形控制标准,据此来指导盾构隧道安全施工。  相似文献   

7.
以重庆轨道环线区间隧道下穿既有结构为背景,利用数值分析与现场监控量测相结合的方法,对复合地层双线TBM隧道施工影响下围岩及既有结构的变形进行了深入研究。数值计算结果表明,右线开挖引起的建筑物沉降远大于左线引起的沉降,隧道施工对既有结构的沉降影响与沉降槽宽度有关。TBM施工对建筑物桩基的变形受力影响与其距隧道中线距离密切相关,离隧道中线越近,桩基沉降越大;不同围岩区域桩身轴力变化趋势也不相同,主要与桩身周边土体相对竖向位移有关。现场监测结果表明,受地层差异及既有结构刚度的影响,双线地表沉降呈偏态的单凹槽状。TBM到达前,建筑物向远离隧道方向倾斜,隧道下穿过程及下穿后,建筑物向隧道方向倾斜。综合数值计算结果和现场监控量测数据,二者所反映的规律基本相同,为今后TBM在类似工程环境中的应用提供借鉴。  相似文献   

8.
魏纲  洪子涵  孙樵 《市政技术》2019,(2):127-130
采用MIDAS/NX软件建立三维有限元模型,研究了类矩形盾构施工对短桩基础框架建筑物的影响。分析了隧道水平位置和土质条件的改变对邻近建筑物沉降的影响以及隧道开挖过程中建筑物的受力及变形规律。研究结果表明:当建筑物中轴线到隧道中轴线的水平距离L=0 m时,随着隧道的开挖,建筑物的沉降逐渐增大且呈正态分布,建筑物最大第1主应力P_1和最大剪应变E_max整体上呈增大趋势,L的改变对建筑物的沉降影响较大;随着L的增大,P_1和E_max总体上呈减小趋势,建筑物产生向隧道一侧的倾斜,到一定距离后建筑物几乎不受影响;土质条件的改变对建筑物的沉降影响较大。  相似文献   

9.
盾构隧道旁穿建筑物地层沉降的数值模拟分析   总被引:1,自引:0,他引:1  
某双线盾构隧道近距离旁穿一幢12层高层建筑,为合理评估隧道施工对建筑物的影响,进行了考虑盾构动态施工及排桩加固的的远端(左线)、近端(右线)以及双线均开挖后隧道横断面及建筑物沉降的FLAC3D数值模拟分析,并对工程现场进行了沉降实测。数值模拟和实测结果表明:不采取加固措施,建筑物基础靠近隧道侧的最大沉降为5.2 mm,最大水平位移达25.8mm;基地土体出现拉剪破坏;数值模拟分析结果与现场实测结果较为一致;若采用排桩加固,建筑物基础靠近隧道侧的最大沉降为2.4 mm,最大水平位移不足10mm,基地土体未出现拉剪破坏;排桩加固能有效降低围岩变形及地表沉降,有利于建筑物的保护。  相似文献   

10.
文章根据实际项目,结合项目工程进度及筹划,通过理论分析和数值模拟的手段,分析了叠落盾构区间开挖引起的地面沉降及新建项目封顶后盾构区间侧穿时其变形承受能力.数值模拟盾构掘进引起地表土体最终沉降量最大值为21.2 mm,受土体位移及变形传递的影响,建筑物的最大水平变形量为2.4 mm,最大沉降量为1.0 mm,最大差异沉降为0.1 mm,高层建筑物的倾斜值0.000 24,并与理论分析计算值相吻合,均满足建筑物变形保护要求.通过相互影响分析表明,新建项目能满足后期盾构隧道侧穿的控制保护标准,其对轨道交通盾构区间实施的影响可控.  相似文献   

11.
依托重庆两江大桥项目,以重庆两江大桥连接隧道下穿华夏大厦段双向4车道连拱隧道为工程背景,通过现场监控量测和数值模拟,研究了两江大桥连接隧道在穿越华夏大厦高层建筑条件下的施工力学行为。研究表明:建筑物基础对减小围岩体内横向水平位移有一定控制作用,但对纵向水平位移则无明显效果,反之距隧道边线17 m范围内建筑均不同程度的受隧道施工影响;隧道地表至拱顶围岩体内,随着深度的增加围岩体内横向垂直位移靠近建筑物基础减少,在完全穿越建筑物基础后达到最小值;随着远离建筑物基础,地表沉降曲线变宽变深,呈对称形态,随着靠近建筑物基础,地表沉降曲线变窄变浅,呈非对称形态。研究成果为紧邻城市高层建筑交通隧道的结构型式、施工工法、支护参数等提供参考。  相似文献   

12.
海地铁10号线同济大学站-国权路站双线盾构长距离平行穿越下立交深基坑,穿越距离为630m,隧道与下立交基坑围护净距约2.0 m,施工现场环境复杂,盾构施工可能导致下立交深基坑围护结构发生侧向位移并产生附加内力。采用三维数值方法,模拟分析在基坑底板浇筑与未浇筑等情况下盾构施工对基坑围护结构侧移及内力影响的规律。分析表明:在底板施工后进行盾构施工,盾构施工引起基坑开挖面以上的围护侧移量较少,但底部侧移量变化非常明显;随着围护结构插入深度的增大,盾构施工引起基坑围护底部的弯矩值有增加的趋势;在底板施工完成的情况下,双线盾构穿越下立交基坑将致靠近基坑底板位置处的弯矩值由正弯矩逐渐变为负弯矩。数值计算较好的指导了实际工程的施工。  相似文献   

13.
依托南京地铁十号线TA03标大直径盾构隧道工程,通过数值模拟研究与工程实测在大直径盾构推进过程中施工参数的改变对周边敏感性建筑物的影响规律。研究结果表明:建筑物的沉降量随注浆浆体弹性模量的增大而减小,适当加大浆体的弹性模量有利于建筑物的保护;注浆压力在一定范围内的变化会对周边敏感性建筑物产生较大影响,当注浆压力超出一定额度时,建筑物的竖向位移以及差异沉降量趋于稳定,不会再随着注浆压力的增大而变化;盾构机推进力对盾构机后方建筑物的沉降影响甚微,当盾构机临近时,盾构机前方建筑物竖向位移量会随着推力的增大而减小,但变化幅度不明显。研究结果对控制因盾构隧道施工引起的周边敏感性建筑物沉降有重要意义。  相似文献   

14.
李林  杨国祥 《中国市政工程》2013,(2):98-102,114
利用现场监测数据研究14.93 m泥水平衡盾构施工诱发的地层扰动的程度、波及范围和持续时间。监测项目包括5根测斜管、9个地表沉降监测点和20个侧向土压力传感器,监测持续45 d。将采集到的测斜数据和深层水土压力数据绘制成云图,结合地表沉降曲线分析表明:盾构正面支护性能优良,盾构切口通过前后地层几乎没有产生位移,盾构底面以下侧向应力扰动度<10%。盾尾脱出及其后一环脱出是地层扰动最剧烈的时刻,隧道开挖卸载造成了底面以下2D×1.5D(D是隧道直径)范围内应力扰动>10%;采用127%的同步注浆率造成了隧道周边土体的向外挤压和地表隆起,土层最大水平位移位于盾构肩部和腰部注浆孔之间,最大位移19.7 mm,距离盾构轴线2.5D范围以外的位移<2 mm;地面隆起最大值41.3 mm,距离盾构轴线外侧1.5D以外的位移<4 mm。盾构远离监测断面30 d后,地面隆起回落57%。  相似文献   

15.
地铁盾构隧道下穿建筑基础诱发地层变形研究   总被引:11,自引:2,他引:11  
城市繁华地区地铁盾构隧道施工常需从建筑基础下穿越,如何确保上部建筑与隧道结构安全是施工中的难题。基于沉降预测理论及FLAC3D进行了地铁施工诱发地层环境损伤评估与控制设计STEAD系统的开发,以广州地铁区间隧道下穿某7层框架结构建筑为例,采用数值模拟研究了地铁盾构隧道穿越建筑基础诱发地层变形的空间效应问题,考虑了不同工况下隧道施工引起地层沉降对该建筑物的影响,采用本研究建议,盾构隧道成功穿越该建筑物,实测证实了变形空间效应研究的科学性与有效性。  相似文献   

16.
为研究基坑开挖对既有盾构隧道产生的影响,以某已建地铁周边基坑工程为背景,通过数值模拟的方法对开挖过程中隧道的位移和膨胀变形进行研究,并与现场监测数据进行了对比分析。结果表明:基坑开挖时,两平行隧道中距离基坑较近隧道的位移变形量大于较远隧道的位移变形量; 同一隧道同一监测线上距离基坑越近隧道监测点位移总变形量越大,且隧道整体朝向基坑方向偏移; 同一隧道的同一竖向截面上不同点的位移不同,靠近基坑一侧监测点位移数值大于背向基坑侧的位移数值; 隧道在整体隆起变形趋势下,存在“竖鸭蛋”变形趋势; 纵向隆起位移量随监测点呈抛物线分布并向两边逐渐减小; 数值模拟结果与现场监测结果基本一致,验证了模拟的正确性; 研究成果可为因地铁周边新建建筑引起地铁变形可能发生的危害做出预警,并提出相应防治措施,为待建地铁隧道项目的安全设计和施工提供参考。  相似文献   

17.
依托盾构隧道近接侧穿群桩工程建立三维数值分析模型,土体采用小应变硬化(HSS)模型,参数取值借鉴已有研究成果并根据监测位移数据反演,同时考虑土体开挖、衬砌拼装以及盾尾同步注浆等一系列施工工艺措施,并将模拟结果与监测数据进行对比验证,研究了不同工况下地表沉降的形态分布、群桩桩基变形及基桩结构受力,同时考虑地表位移对等代层厚度的敏感性。结果表明:HSS模型能有效预测隧道近接侧穿高架桥桩引起的变形,模拟结果与监测值较吻合; 隧道开挖引起土相对桩产生了滑移,地表沉降及桩身竖向位移在中心线前后各1D(D为管片外径)范围内随推进步数的增加而不断增大,且增加幅度明显减小; 两线推进地表沉降具有叠加效应,最大沉降量增幅达76.8%; 隧道与基桩水平距离越近,引起基桩沉降变化越大,两线推进基桩桩顶沉降增幅达134%; 群桩中各排桩的水平位移变化趋势基本相同,且同排桩的水平位移值相差不大,由于群桩遮挡效应,水平位移值由大到小依次为前排桩、中排桩、后排桩; 桩身水平位移主要在盾构中轴线2.5D范围内,桩身最大水平位移均出现在隧道中轴线附近; 群桩中同排桩桩身附加弯矩及附加轴力沿桩身分布规律相同,桩身最终附加受力与其距离隧道远近有关; 随着注浆充率β的增大,等代层厚度及地表沉降呈线性减小; 穿越段采取的施工工艺方案是有效的,经估算附加弯矩及轴力对桩基承载力的影响在容许范围内。  相似文献   

18.
为了研究地基液化对高层建筑结构的影响和破坏,利用室内模拟地震振动台,再现高层建筑结构倾斜大位移灾害。获取地基砂土层不同位置的液化程度,确定影响范围,分析高层建筑结构倾斜灾变过程中结构的水平位移、基频和阻尼比、振型曲线以及各部位动应变响应的变化规律,研究地基液化对高层建筑结构动力响应的影响。研究表明:随着地震波峰值加速度的不断增大,地基液化程度不断提高、液化范围不断加大;高层建筑结构水平位移与地基液化状态具有明显正相关性,结构水平位移增幅随地基超孔压增幅的增大而增大;随着地震波峰值加速度的不断增大,结构的基频逐渐下降,阻尼比逐渐升高;结构1阶振型具有弯剪型特点,试验过程中振型曲线的形状基本一致,说明结构损伤不明显,刚度变化很小;由于地基液化导致高层建筑结构倾斜灾变,结构发生应力重分布,重分布之后结构各部位应变值趋于稳定。  相似文献   

19.
盾构法施工地铁隧道近距离侧穿高速公路桥梁桩基时,引起地层移动和应力调整,导致桩基位移和内力发生变化,给上部结构带来安全隐患。以杭州地铁3号线工大站—留和站盾构区间双线施工为依托,运用三维有限元软件模拟盾构开挖施工的全过程,研究开挖过程对地层沉降及邻近桥梁桩基影响规律。结果表明,先行隧道开挖导致地表形成沉降槽,后行隧道开挖沉降曲线向后行线扩展;桩基竖向呈现刚体位移,单线开挖时在横向(Y方向)上嵌入土体桩基上半部分向隧道内倾移,下半部分背离隧道方向倾移,在纵向(X方向)上桩基呈现拱形弯曲,双线开挖时桩基横向位移发生反向叠加效应,导致最终横向位移基本接近初始状态,纵向上弯曲位移发生正向叠加效应;双线隧道先后开挖使桩基产生附加摩阻力和附加轴力,在隧道顶面分界线以上桩基总侧摩阻力较初始状态不断减小,分界线以下增加,位于-2.5 m以上桩基轴力较初始状态减小,以下增加;单线开挖时桩基弯矩变化明显,双线开挖弯矩出现反向叠加效果,基本保持初始状态。  相似文献   

20.
双线盾构施工对邻近建筑物影响的数值分析   总被引:6,自引:1,他引:5  
 城市繁华地区盾构隧道施工常需从建筑下方地层穿越,如何确保上部建筑及隧道安全是施工中的难题。以武汉长江双线盾构隧道工程为例,利用有限元程序ABAQUS,对穿越武汉理工大学5层钢筋混凝土框架结构电教楼下方的隧道盾构掘进采用三维数值分析方法进行计算,模拟盾构掘进引起的地层变形和规律以及对隧道上部建筑物的影响。计算预测值与实测值较吻合,分析方法可用于分析和预测盾构掘进引起地层及隧道上部建筑物的变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号