首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
针对示范快堆堆芯熔融物收集装置的高温结构完整性问题,采用堆芯熔融物滞留在反应堆压力容器策略有效性评估方法(IVR-DOE10460),建立了316H本构模型、多轴修正以及具体的分析评价方法。通过搜集与分析ASME规范和R66材料数据手册中316H钢相关的材料数据,确定了输入数据。在此基础上,利用有限元分析软件ABAQUS开展堆芯熔融物堆积形态下堆芯熔融物收集装置的应力应变分析,并基于时间分数法与延性耗竭法(应变分数法)对堆芯熔融物收集装置进行蠕变强度校核。有限元分析结果表明:堆芯熔融物收集装置在设计时间内可满足时间分数和应变分数小于1的蠕变强度考核要求,且满足竖直位移小于设计指标的功能性要求。堆芯熔融物收集装置在堆芯熔化严重事故后能保持结构的完整性。  相似文献   

2.
ASME 2021版规范提供了316H不锈钢的高温蠕变本构方程。基于正确使用本构方程进行高温设备应变和蠕变损伤评价的目的,本文解析了其各项的物理意义,分析了其关键参数对温度和应力的敏感性,对比了其预测值与ASME规范等时应力应变曲线数据。结果表明:该本构方程由快速瞬态、瞬态和稳态蠕变项来描述蠕变第一、第二阶段,其适用性受蠕变第三阶段起始时间和应力范围的限制,同时方程中快速瞬态蠕变速率常数存在勘误;方程在1 000℉(华氏温度)下所得应变较规范等时应力应变曲线更大,致使应变预测结果相对保守。因此,在满足ASME规范316H不锈钢高温蠕变本构方程适用性的前提下,可采用其评价高温设备在950、1 050、1 150℉下的结构完整性,而1 000℉下的相对保守。  相似文献   

3.
严重事故下熔融物与下封头间球形窄缝通道的存在对于下封头结构的完整性有一定的积极意义。本工作通过理论分析,在汽液两相间逆向对流限制机理的基础上提出了球形窄缝通道内的CHF机理模型和预测关系式,预测结果与实验数据符合较好,验证了所建模型的正确性,并进一步分析了系统压力、熔融物半径、间隙尺寸等关键参数对临界热流密度的影响规律。利用本工作的预测模型对三哩岛(TMI-2)事故后堆芯熔融物特性进行了计算分析,结果表明,熔融物与下封头内壁面间的球形窄缝可有效带走堆芯余热,保证了下封头的完整性。  相似文献   

4.
针对HPR1000堆型堆芯熔融坍塌问题建立了精确的三维堆芯模型,使用时间推进方法通过求解熔融物的瞬态运动、传热微分方程,确定熔融物在堆芯中的瞬态位置和瞬时温度,以模拟堆芯升温及堆芯熔融进程。研究结果表明:停堆后约2 400 s开始出现熔融现象,熔融物在堆芯活性区域内下落且发生多重相变过程;在4 900 s后,熔融物在堆芯底部形成约1.5 m高的稳定熔池;由于外围组件与低温围栏装置换热,最外围的组件不会发生熔融。本文建立的堆芯熔融物运动与传热分析模型及相关计算结果,可为事故缓解和处理提供技术参考。  相似文献   

5.
为掌握船用反应堆严重事故工况下压力容器失效初期堆芯熔融物热冲击对金属堆腔的破坏效应,开展了堆芯熔融物与金属堆腔相互作用机理实验。根据相似准则设计缩比金属堆腔实验装置,利用已有高温熔融物实验平台制备2 700 ℃高温氧化锆熔融物,通过特制卸料机构将高温熔融物卸料到实验段,对热冲击下实验段温度和变形响应特性及主要影响因素进行了研究。实验结果表明,高温熔融物进入金属堆腔初期,热冲击导致的金属堆腔最高温度为601 ℃,最大塑性变形量为0.44 mm,高温熔融物未导致金属堆腔热失效及断裂失效,金属堆腔实验段能保持完整。由于船用反应堆金属堆腔材料、结构和外部冷却条件更有利于保持金属堆腔完整性,基于实验结果推断,严重事故下压力容器下封头失效初期热冲击导致金属堆腔失效的风险较低。  相似文献   

6.
朱光昱  郭超  刘巧凤  李春  依岩 《核技术》2023,(7):113-119
核电厂发生堆芯熔毁严重事故后,堆芯熔融物可能熔穿反应堆压力容器壁面造成第二道屏障失效,此时可通过堆芯捕集器收集并冷却熔融物以防止事故进一步发展。为了探讨俄罗斯VVER(Vodo-Vodyanoi Energetichesky Reactor)采用的坩埚式堆芯捕集器中熔融物的冷却过程,本文根据VVER堆芯捕集器设计资料推导参数,采用多物理场耦合软件COMSOL建立相应的计算模型,对堆芯捕集器中熔融池的流场、温度场和结壳情况进行了数值模拟研究。计算结果表明:在分层熔融池结构下,金属层会迅速凝固,含衰变热的氧化物层冷却十分缓慢。为了实现坩埚式堆芯捕集器设计功能,需要相关设备和支持辅助系统在很长时间内保持可运行性。  相似文献   

7.
在田湾核电站堆芯捕集器的设计中,综合采用了压力容器外包容装置、非能动供水冷却堆芯熔融物包容体金属表面以及用"牺牲性"材料改善熔融物特性和降低热流密度等项技术;利用SCDAP/RELAP和MELCOR两个独立的程序包分析了压力容器内堆芯的损坏、碎片的分布、熔池的形成、压力容器熔穿和熔融物转移到堆芯捕集器等的动态过程,并对堆芯熔融物、"牺牲性"材料、金属材料等之间的物理、化学反应和热交换器的热工水力特性进行了实验研究.  相似文献   

8.
堆芯支承块用以限制堆芯吊篮的周向转动,其结构完整性影响反应堆的安全运行。为保证堆芯支承块的结构完整性,本文建立CAP1000反应堆压力容器下封头、堆芯支承块及部分筒体的三维有限元模型,进行热分析、结构分析、疲劳分析及断裂分析,并根据ASME B&PVC-III-NB-3200和ASME B&PVC-III-1附录G的相关规定对计算结果进行评定。结果表明,堆芯支承块及附近下封头满足上述规范的相关要求。本文所采用的分析方法可应用于百万级以上核电厂反应堆压力容器的堆芯支承块的分析。  相似文献   

9.
堆芯熔化严重事故下反应堆压力容器下封头高温蠕变分析   总被引:4,自引:2,他引:2  
核电厂在发生堆芯熔化严重事故时,采用堆内熔融物滞留(IVR)策略将熔融物包容在反应堆压力容器(RPV)内是一项重要缓解措施。在IVR策略期间,RPV下封头在熔融物的极高温度载荷和力学载荷的共同作用下很有可能因过度蠕变变形而失效。因此,有必要对熔融物滞留条件下RPV下封头进行蠕变变形分析,以保证RPV结构完整性。该文在假定IVR条件下,采用有限元方法对RPV下封头进行热-结构耦合分析,通过计算得到容器壁的温度场和应力场,以及下封头的塑性和蠕变变形,并结合塑性和蠕变断裂判据对下封头进行失效分析。结果表明,考虑蠕变影响后,结构的变形将大大增加;严重事故下采取熔融物滞留策略期间,RPV下封头的主要失效模式为蠕变失效而非塑性失效;内压对蠕变变形量和蠕变失效时间有较大影响。该文为严重事故下RPV下封头的蠕变和失效研究提供了分析方法。   相似文献   

10.
为掌握船用反应堆严重事故工况下压力容器失效初期堆芯熔融物热冲击对金属堆腔的破坏效应,开展了堆芯熔融物与金属堆腔相互作用机理实验。根据相似准则设计缩比金属堆腔实验装置,利用已有高温熔融物实验平台制备2 700℃高温氧化锆熔融物,通过特制卸料机构将高温熔融物卸料到实验段,对热冲击下实验段温度和变形响应特性及主要影响因素进行了研究。实验结果表明,高温熔融物进入金属堆腔初期,热冲击导致的金属堆腔最高温度为601℃,最大塑性变形量为0.44 mm,高温熔融物未导致金属堆腔热失效及断裂失效,金属堆腔实验段能保持完整。由于船用反应堆金属堆腔材料、结构和外部冷却条件更有利于保持金属堆腔完整性,基于实验结果推断,严重事故下压力容器下封头失效初期热冲击导致金属堆腔失效的风险较低。  相似文献   

11.
During severe accident of a light water reactor (LWR), the piping of the reactor cooling system would be damaged when the piping is subjected to high internal pressure and very high temperature, resulted from high temperature gas generated in a reactor core and decay heat released from the deposit of fission products. It is considered that, under such a condition, short-term creep at high temperatures would cause the piping failure. For the evaluation of piping integrity under a severe accident, a method to predict such high temperature short-term creep deformation should be developed, using a creep constitutive equation considering tertiary creep. In this paper, the creep constitutive equation including tertiary creep was applied to nuclear-grade cold-drawn pipe of 316 stainless steel (SUS316), based on the isotropic damage mechanics proposed by Kachanov and Ravotnov. Tensile creep test data for the material of a SUS316 cold-drawn pipe were used to determine the coefficients of the creep constitutive equation. Using the constitutive equation taking account of creep damage, finite element analyses were performed for the local creep deformation of the coolant piping under two types of conditions; uniform temperature (isothermal condition) and temperature gradient of circumferential direction (non-isothermal condition). The analytical results show that the damage variable integrated into the creep constitutive equation can predict the pipe failure in the test performed by Japan Atomic Energy Research Institute, in which failure occurred from the outside of the pipe wall.  相似文献   

12.
为了获得反应堆压力容器(RPV)材料在高温下的蠕变行为,保证RPV在严重事故工况下的完整性,本研究对国产RPV用16MND5钢的高温蠕变性能进行了测试,获得了600~900℃下材料的蠕变性能,并基于应变强化的基本蠕变本构模型与基于延性耗竭理论的蠕变损伤模型,建立了适用于16MND5钢的蠕变损伤本构模型,给出了材料的蠕变损伤模型参数。结果表明,本文提出的蠕变损伤本构模型的有限元模拟数据与试验数据符合性较好,验证了此蠕变损伤模型的正确性。该方法可用于严重事故情况下RPV的蠕变损伤分析,为RPV的完整性分析提供支持。   相似文献   

13.
堆芯熔化严重事故下保证反应堆压力容器(RPV)完整性非常重要,高温蠕变失效是堆芯熔化严重事故下反应堆压力容器的主要失效模式。在进行严重事故堆芯熔化物堆内包容(IVR)下RPV结构完整性分析中,RPV内外壁和沿高度方向的温度分布以及剩余壁厚是结构分析的重要输入。本文采用CFD分析方法对RPV堆内熔融物、RPV壁以及外部气液两相流动换热进行热-固-流耦合分析,获得耦合情况下的温度场、流场、各相份额分布以及RPV的剩余壁厚,为RPV在严重事故IVR下的结构完整性分析提供依据。  相似文献   

14.
Considering the hypothetical core melt down scenario for a light water reactor (LWR) the failure mode of the reactor pressure vessel (RPV) has to be investigated to determine the loadings on the containment. The failure of reactor vessel retention (FOREVER)-experiments, currently underway, are simulating the thermal and pressure loadings on the lower head for a melt pool with internal heat sources. Due to the multi-axial creep deformation of the vessel with a non-uniform temperature field these experiments are an excellent source of data for validation of numerical creep models. Therefore, a finite element (FE) model has been developed based on a commercial multi-purpose code. Using the computational fluid dynamics (CFD) module the temperature field within the vessel wall is evaluated. The transient structural mechanical calculations are performed using a new numerical approach, which avoids the use of a single creep law employing constants derived from the data for a limited stress and temperature range. Instead of this a three-dimensional array is developed where the creep strain rate is evaluated according to the values of the actual total strain, temperature and equivalent stress. Care has to be exercised performing post-test calculations particularly in the comparisons of the measured data and the numerical results. Considering the experiment FOREVER-C2, for example, the recorded creep process appears to be tertiary, if a constant temperature field is assumed. But, small temperature increase during the creep deformation stage could also explain the observed creep behavior. Such considerations provide insight and better predictive capability for the vessel creep behavior during prototypic severe accident scenarios.  相似文献   

15.
主循环泵惯性飞轮完整性分析   总被引:1,自引:0,他引:1  
核反应堆主循环泵上安装储能飞轮,能够为反应堆在断电事故下提供冷却剂,避免堆芯损坏。储能系统的结构完整性直接关系到反应堆的安全。本文采用非线性接触算法,利用有限元软件对主循环泵飞轮进行完整性分析。考虑过盈、额定转速和超速等载荷工况,从结构强度和断裂力学两方面进行了分析。计算结果表明,飞轮的结构强度及假想缺陷处应力强度因子均满足标准要求,在规定工况下能够保证其结构完整性。  相似文献   

16.
核电站严重事故发生后,反应堆压力容器(RPV)的剩余固壁在高温差、内压、熔池重量等的作用下可能发生蠕变失效。本文以CPR1000 RPV为研究对象,基于FLUENT软件二次开发求解反应堆压力容器下封头烧蚀温度场,然后基于ANSYS Workbench开展耦合CFD-FEM力学分析,求解严重事故下RPV烧蚀温度场稳定后72 h内的等效应力、等效塑性应变和等效蠕变应变,并评估了RPV的蠕变失效风险。结果表明:当堆坑注水等措施投运后,RPV剩余固壁在72 h内不会发生蠕变失效和塑性变形失效,有效卸压可明显提升RPV结构完整性的安全裕度。  相似文献   

17.
After a reactor core melt accident, creep failure may occur in the residual solid wall of the reactor pressure vessel (RPV) under the influence of high temperature difference, internal pressure and the weight of the molten pool. In this work, the CPR1000 RPV was used as a research object. The ablation temperature field of the lower head of RPV was solved through the secondary development of the FLUENT software. And then, a CFD-FEM coupling analysis was carried out based on ANSYS Workbench software. The equivalent stress, the equivalent plastic strain and the equivalent creep strain of the RPV within 72 h under severe accident after the wall ablation and temperature field distribution formed stably were calculated. The risk of creep failure of the RPV was evaluated. The results show that when the reactor pit water injection measure puts into operation, the residual solid wall of the RPV will not experience creep failure and plastic deformation failure within 72 h, and besides, the pressure relief can significantly increase the safety margin of the structural integrity of the RPV.  相似文献   

18.
快堆堆芯抗震分析是堆芯设计的重要组成部分,它将为堆芯在地震作用下的结构完整性评价和堆芯反应性变化分析提供必要的数据,同时为控制棒的可插入性评价提供参考。本文采用日本有限元程序FINAS,以中国实验快堆为例,对快堆堆芯水平抗震的计算方法和模型进行了研究,完成了单组件预分析,其中包括模态分析、自由振动分析和与刚性墙壁的碰撞分析,为堆芯多组件水平抗震分析作好了准备。  相似文献   

19.
冷加工316(Ti)不锈钢CW 316(Ti)SS是我国首选的快堆包壳材料,国产材料的常规力学性能与国外数据相当,但高温蠕变和高温持久强度数据却较低.本项研究主要是通过观察、比较国产快堆包壳材料和俄罗斯快堆包壳材料在高温下微观结构的变化情况,并结合对国产材料高温持久断裂试验样品的断口形貌观察结果,分析得出:国产材料长时高温力学性能下降的主要原因是沿晶界的σ相析出.  相似文献   

20.
For future reactors, the control and cooling of ex-vessel corium melts is under consideration to increase the passive safety features even for very unlikely severe accidents. In this context, different research activities are studying ex-vessel corium behaviour and control, including the implementation of a core cooling device outside the reactor pressure vessel in order to prevent basement erosion and to maintain the integrity of the containment. This paper describes current research on key phenomena which must be understood and quantified to be finally controlled by the cooling device. These are the release of corium melt from the pressure vessel, the temporary retention of the melt in the reactor cavity until melt through of the gate, spreading of the melt on a large surface, and finally the cooling and solidification of the melt by direct water contact. The experiments use high temperature melts which are similar to corium melts. Where necessary, models are developed to transfer the results to reactor scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号