首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for describing the nature of radial electric field and its relation with toroidal rotation in edge plasma of small size divertor tokamak is proposed in this work. The expression of radial electric field in the edge plasma of small size divertor tokamak can be divided into two parts. The first part E r (0) is related to electrostatic potential of plasma in edge plasma of this tokamak. The second part E r (1) is related to contribution of toroidal rotation of radial current in edge plasma of this tokamak. The results of this work provide the following: (1) A new one-dimensional ordinary differential equation for toroidal velocity is obtained. The one-dimensional ordinary differential equation suggest new tool to explaining tokamak experiments involving measurements of plasma rotation and radial electric field. (2) Also the results of this work shows that, the main contribution to the radial electric field inside separatrix (plasma core) gives the term E r (1).  相似文献   

2.
The radial electric field in the edge plasma of small size divertor tokamak can be simulated by B2SOLPS0.5.2D fluid transport code. The simulation provides the follow results: (1) Switching on and off the part of the parallel plasma viscosity driven by parallel ion diamagnetic heat flux (Bekheit in J. Fusion Energ 27(4), 338–345, 2008; Schneider et al. in Nucl. Fusion 41:387, 2001) and Counter-NBI plasma heating change profile of radial electric field significantly. (2) Switching on and off the parallel plasma viscosity driven by parallel ion diamagnetic heat flux leads to the radial electric field is toroidal magnetic field dependence (3) For the case of counter-NBI plasma heating, the switching on and off the current driven by part parallel plasma viscosity depends on the ion diamagnetic heat flux leads to the ion poloidal velocity is toroidal magnetic field BT dependence. (4) The profile of the radial electric field in edge plasma of small size divertor tokamak is consistent with poloidal rotation velocity.  相似文献   

3.
The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform,parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and "bumpon-tail" profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould(TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution.  相似文献   

4.
Using a reciprocating Langmuir probe system, the boundary plasma behaviors were investigated before and after lithium/silicon coating. Accompanying the effective reduction of impurity radiation, strong shears of radial electric field and poloidal velocity came into being and the turbulence suppression and de-correlation were observed in the edge region of coated wall plasma. All these led to the reduction of the edge transport and improvement of plasma confinement. In the central line averaged density scanning experiments, an enhanced shear of the radial electric field was observed in the edge plasma with the increase of the density, which may account for the enhancement of the transport barrier and the improvement of particle confinement.The results suggest a close link between wall conditions and boundary plasma. In addition to the relationship, (~Te)/Te ~(~n)n/ne and θ_(~T)e(~n)e ~π, had been observed in the plasma edge region, which indicates the important role of the ionization and radiation in turbulence driving.  相似文献   

5.
Based on the electron‘s radial force equilibrium, the profiles of radial electric field in OH and LHCD phase are calculated by using a simulation code. The dependences of radial electron field on electron density and its profile and different current ratio, Irf/Ip, are given. The connections between the improvement of plasma confinement and the modified radial electric field by LHCD are discussed by comparing the calculated results with the experimental results.  相似文献   

6.
Edge plasma characteristics were studied by a fast-scanning 4-probe array and a Much/Reynolds stress/Langmuir 10-probe movable array in the boundary region. These probes could measure the edge plasma temperature, density, poloidal electric field, radial electric field, Reynolds stress, poloidal rotation velocities and their profiles, which could be obtained by changing the radial positions of the probe array shot by shot. The measured results were used to analyse plasma confinement, turbulent fluctuations and correlations. The fixed flush 3-probe arrays were mounted on the 4-divertor neutralization plates at the same toroidal cross-section in the divertor chamber. These probes were used to measure the profiles of the electron temperature, density and float potential in the divertor chamber. Edge plasma behaviours in both limiter configuration and divertor configuration are compared. The decay lengths of the edge temperature and density were measured and is emphasized for plasma behaviours of the supersonic molecular beam injection and lower hybrid current drive. The dependence of the radial gradient of Reynolds stress on the poloidal flow and the radial gradient of the electric field on turbulent loss are discussed.  相似文献   

7.
1. IntroductionUnderstanding and improving confinement still remains one of the major goals of the tokamak fusionprogram, and the most important research schemein tokamak assistance plasma confinement with auxiliary heating and current drive. When auxiliarypower exceeds a threshold value, an L-H transitionwill take place [1]. Theories and experiments showthat this transition is concerned with the shearedplasma poloidal rotation in the edge [2]. When anexternal electromagnetic wave is injected…  相似文献   

8.
Edge Structure of Reynolds Stress and Poloidal Flow on the HL-1M Tokamak   总被引:3,自引:0,他引:3  
1. IntroductionThe determination Of electrostatic Reynolds stressand plasma poloidal flow velocity in scrape-off 18yer(SOL) and on the boundary of tokajxnak plasma havebeen of prime importance due to its potential rolein confinement and the L-H mode transition [1-5].As the plasma confinement is sensitive to the edgeconditions, various mechanisms have been theoretically proposed to explain the creation of a shearedpQloidal flow [6-8]. In brief, the theories attemptingto explain the L--H tra…  相似文献   

9.
The simulation of the radial electric field shear, which is responsible for L-H transition by means B2SOLPS0.5.2D transport code, gives the dependence of this shear on plasma parameters. Also, as result of uni-directional neutral beam heating, internal transport barrier is formed and ion radial heat flux q ir starts to decrease. Furthermore, the dependence of radial electric field shear on ion temperature gradient ITG has also investigated.  相似文献   

10.
The simulation of the radial electric field shear, which is responsible for L-H transition by means B2SOLPS0.5.2D transport code, gives the dependence of this shear on plasma parameters. Also, as result of uni-directional neutral beam heating, internal transport barrier is formed and ion radial heat flux q ir starts to decrease. Furthermore, the dependence of radial electric field shear on ion temperature gradient ITG has also investigated.  相似文献   

11.
The distribution of magnetic field in Hall thruster channel has significant effect on its discharge process and wall plasma sheath characteristics. By creating physical models for the wall sheath region and adopting two-dimensional particle in cell simulation method, this work aims to investigate the effects of magnitude and direction of magnetic field and ion velocity on the plasma sheath characteristics. The simulation results show that magnetic field magnitudes have small impact on the sheath potential and the secondary electron emission coefficient, magnetic azimuth between the magnetic field direction and the channel radial direction is proportional to the absolute value of the sheath potential, but inversely proportional to the secondary electron emission coefficient. With the increase of the ion incident velocity, secondary electron emission coefficient is enhanced, however, electron density number, sheath potential and radial electric field are decreased. When the boundary condition is determined, with an increase of the sinmlation area radial scale, the sheath potential oscillation is aggravated, and the stability of the sheath is reduced.  相似文献   

12.
A version of the B2SOLPS0.5.2D fluid transport code is the new version of B2SOLPS fluid transport code, which is suited technique to simulate the edge plasma of small size divertor tokamak in the H- regime. The results of simulation provide the following: (1) the radial electric field inside the transport barrier is consistent with the neoclassical nature of the radial electric field. (2) The absolute value of the radial electric field shear at inner side of internal transport barrier is small and consistent with the value of shear before the L–H transition, while the value of shear at barrier is significantly large. (3) As a result of strong radial electric field shear and strong barrier formation the diffusion coefficient reduced by factor ~3 with respect to L-mode while ion heat conductivity reduced by factor ~22 with respect to L-mode inside the barrier. (4) The toroidal (Parallel) flux is directed along co-current direction as L-mode but at inner side of barrier is significantly large in absolute value. (5) The radial profile of toroidal rotation in vicinity of transition layer is determined by the parameter δ (width of the transition layer) depending on the collisionality and anomalous diffusion coefficient.  相似文献   

13.
We model the internal transport barrier “ITB” in edge plasma of small size divertor tokamak with B2SOLPS0.5.2D fluid transport code. The simulation results demonstrated the following: (1) we control the internal transport barrier by altering the edge particle transport through changes the edge toroidal rotation which agree with the result of Burrell et al. (Edge Pedestal control in quiescent H-mode discharges in DIII-D using co-plus counter-neutral beam injection, Nucl Fusion, 49, 085024 (9pp) in 2009). (2) The radial electric field has neoclassical nature near separatrix with discharge by co-injection NBI. (3) The toroidal plasma viscosity has strong influence on the toroidal velocity.  相似文献   

14.
The fact that the mean free path of an electron in plasma is a strongly increasing function of its velocity gives rise to the phenomenon of fast (high energy) electron production. In an electric field, electrons which exceed a critical velocity, for which the collisional drag balances the acceleration by the field, are accelerated freely and can reach very high energies. In low density tokamak discharges a considerable amount of these high energy electrons with energies up to tens of keV to MeV can thus be created. As these energetic electrons are effectively collision-less, they follow the magnetic field lines and can therefore been used to probe the magnetic turbulence in the core of the plasma. In this research, external electric field effects on the discharges which lead to this phenomenon were investigated. Tokamak limiter biasing is one of the methods for controlling the radial electric field and can induce a transition to an improved confinement state.  相似文献   

15.
Simulations of L-regimes of small size divertor tokamak plasma edge have been performed with the B2SOLPS5.0 2D fluid transport code for wide range parameters. A conclusion has been made that, radial electric field in the vicinity and inside separatrix is near to neoclassical electric field value. The poloidal E × B drifts and compensating parallel fluxes in the scrape off layer are large in the L-regime with ITB due to steeper gradients while the qualitative pattern of the flows is similar to that of the L-mode.  相似文献   

16.
Resonant magnetic perturbations (RMPs) are extensively applied to mitigate or suppress the edge localized mode in tokamak plasmas, but will break the axisymmetric magnetic field configuration and increase the loss of energetic ions. The mechanism of RMPs induced energetic ion loss has been extensively studied, and is mainly attributed to resonant effects. In this paper, in the perturbed non-axisymmetric tokamak pedestal, we analytically derive the equations of guiding center motion for energetic ions including the bounce/transit averaged radial drift velocity and the toroidal precession frequency modified by strong radial electric field. The loss time of energetic ions is numerically solved and its parametric dependence is analyzed in detail. We find that passing energetic ions cannot escape from the plasma, while deeply trapped energetic ions can escape from the plasma. The strong radial electric field plays an important role in modifying the toroidal precession frequency and resulting in the drift loss of trapped energetic ions. The loss time of trapped energetic ions is much smaller than the corresponding slowdown time in DIII-D pedestal. This indicates that the loss of trapped energetic ions in the perturbed non-axisymmetric pedestal is important, especially for the trapped energetic ions generated by perpendicular neutral beam injection.  相似文献   

17.
In this work, the turbulent transport in the edge plasma and Scrape-Off Layer (SOL) region of IR-T1 tokamak at the presence of biased limiter has been investigated and analyzed. The time and radial evolution of floating potential, electric field and turbulent transport have been measured by using two arrays of the Langmuir probes in both the radial and poloidal directions. The analyses have been done by the Fast Fourier Transport method and spectral features of them are obtained with the help of the standard Auto-Correlation technique and modified covariance power spectral density estimate. The probability distribution function and actual transfer function magnitude of the radial and poloidal turbulent transport (Γr and Γp) have been investigated and compared in the edge plasma and SOL region. Also the histogram of turbulent transport has been analyzed and compared in the edge and SOL at presence of positive limiter biasing. The results show that in the edge plasma poloidal turbulent transport (Γp) is about of 60 % more than SOL region whereas radial turbulent transport (Γr) is about of 40 % less. During the application of positive biasing, it was found that Γr in the IR-T1 reduces by about 80 % in the edge plasma and 45–50 % in the SOL. Increase of Γp is about of 50 % after applied positive biasing in the edge while it increases 70 % nearly, in the SOL. Consequently, the improvement in confinement can be obtained for positive limiter biasing.  相似文献   

18.
A steady state two-fluid model has been used to study the characteristics of the collisionless plasma sheath in the presence of an external magnetic field and by taking into account both the ion temperature and the ion drift velocity at the sheath edge. The number and momentum equations of ions, the Boltzmann distribution of electrons and Poisson equations are solved numerically. The dependence of the Bohm magnetized sheath criterion to ion temperature is examined. It is shown that the ion temperature has significant effects on the sheath characteristics such as ion velocity, charged particles densities and electric potential. In the specific orientations of the magnetic field, it is found that by increasing the ion temperature, the ions do not achieve energy and the kinetic energy of the ions in the depth direction reaches the specific value at bigger distance from the plasma-sheath boundary.  相似文献   

19.
ITER will use a novel electrostatic method to remove the unwanted residual charged component from the neutral beam injectors in place of the usual magnet separation system. This technique has not been tested experimentally and is subject to the additional complication of plasma formation perturbing the electric field. Previous calculations have shown that whilst this is not significant for the 1 MeV heating beam systems, the lower energy diagnostic beam system will be susceptible. An analytical model of the electrostatic dump has been developed that includes the perturbation of the vacuum electrostatic field by both plasma and the separating positive and negatively charged residual beams. An approximate solution of Poisson’s equation is formulated that allows analysis of the space charge field when plasma density is insufficient to ensure zero electric field at the anode. The resulting modified electric field is then incorporated into a particle trajectory code to determine the deposition of the residual ions on the ERID panels. It is shown that the effect of plasma formation is to introduce an asymmetry into the deflecting field and the effect of the separating charges is to weaken the deflection of the residual beams. As a consequence the reference design for the ITER diagnostic beam will not collect all of the residual ions and it is recommended that the deflection voltage be increased by at least 50%.  相似文献   

20.
本文采用数值方法求解Grad-Shafranov方程反演EAST典型长脉冲放电实验(炮号33068)的平衡位形和磁场分布,进而结合粒子在托卡马克电磁场中的运动方程,模拟氘离子在负径向电场存在时的运动轨迹,并统计不同负径向电场下的氘离子俘获率。结果表明:随负径向电场的增大,氘离子轨迹由扩张通行轨迹向外翻香蕉轨迹再向内翻香蕉轨迹,最后向压缩通行轨迹演变;氘离子俘获率随负径向电场的增大而减小,氘离子初始速度越小,其变化越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号