首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以三聚磷酸钠为交联剂,分别在pH值为3和8条件下制备具有不同交联度的磁性壳聚糖树脂(TPP-MCR)。考察了pH值、吸附时间及初始铀浓度对TPP-MCR吸附UO2+2的影响。结果表明,pH值对两种不同交联度TPP-MCR吸附UO2+2的影响差别较大。FTIR分析表明,TPP-MCR中磷酸根为UO2+2主要吸附位。TPP-MCR吸附UO2+2为吸热自发过程,吸附动力学可用拟二级动力学模型拟合,表明以化学吸附为主。吸附等温线可用Langmuir模型拟合,293K时最大吸附容量为166.7mg/g。吸附UO2+2后的TPP-MCR可用0.1mol/L HNO3-0.1 mol/L EDTA溶液洗脱再生,并可重复使用多次。  相似文献   

2.
采用生物吸附法去除废水中Th(Ⅳ),研究了南海红树林内源真菌Fusarium sp.#ZZF51化学改性后吸附Th(Ⅳ)的行为特性、吸附模型及吸附机理。通过柠檬酸对真菌Fusarium sp.#ZZF51进行修饰,将吸附剂表面的羟基与柠檬酸发生酯化,能更有效地吸附钍离子。结果表明:常温常压下,pH=4.5,ρ0(Th(Ⅳ))=50mg/L,吸附剂0.03g,反应90min,最大吸附率为90.87%,吸附量为75.47mg/g,吸附量比未经处理的真菌(最优吸附条件下,吸附量为11.35mg/g)吸附要大。通过Langmuir、Freundlich、Temkin三种等温吸附模型对数据进行拟合,Langmuir模型能更好地描述受试菌对Th(Ⅳ)的平衡吸附行为,同时吸附过程能很好的用准二级反应动力学来解释。此外,比较吸附前后红外光谱图,发现细胞壁上羰基、羟基、氨基是主要的作用基团。  相似文献   

3.
以氧化石墨烯和壳聚糖为原料,1-乙基-(3-二甲基氨基丙基)3-乙基碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)为活化剂,超声法制备了磁性氧化石墨烯/壳聚糖纳米复合材料(MCGO),并研究了其对水溶液中UO_2~(2+)的吸附性能。SEM、FT-IR和XRD分析结果表明,成功制得了MCGO,且负载的Fe_3O_4尺寸为nm级。在温度为288K、pH=5.5、UO_2~(2+)初始浓度为160 mg/L、吸附时间为1.5h时,MCGO吸附容量为266.67mg/g。对实验数据进行热力学和动力学模型拟合,结果表明,MCGO吸附行为符合Langmuir模型和准二级动力学模型,且吸附为吸热自发过程。MCGO第1次重复利用率高达98.47%,经过6次吸附-脱附后,重复利用率仍有74.43%,具有较好的重复利用性。  相似文献   

4.
Fe3O4/改性壳聚糖磁性微球对Hg2+和UO22+的吸附   总被引:2,自引:0,他引:2  
利用反相悬浮分散法和聚乙二胺改性制备成Fe3O4/壳聚糖磁性微球(PEMCS)以提高其氨基含量.采用X射线衍射(XRD)、红外(IR)、热重分析(TGA)等对其进行了表征,考察PEMCS对Hg2 和UO22 的吸附性能.结果表明,其吸附剂粒径小(15-30 μm),吸附速率快;当氨基含量6.47 mmol/g、pH<3时可选择性分离Hg2 和UO22 ,因Hg2 能与Cl-形成络阴离子(HgCl3-),以离子交换机理吸附,而UO2 2则不能.对Hg2 与UO22 的饱和吸附容量qm(mmol/g)分别为2.19与1.38.动力学数据采用Lagergrent拟合,对Hg2 与UO22 的吸附速率常数Kad(min-1)分别为0.087和0.055.UO2 2和Hg2 可用1 mol/L H2SO4脱附,UO2 2还可用2 mol/L HCl脱附,脱附率>90%.  相似文献   

5.
以顺丁烯二酸酐修饰的β-环糊精(β-CD)、丙烯腈(AN)和顺丁烯二酸酐(MAH)为单体,合成了功能化三元共聚物水凝胶β-CD/MAH-co-AN-co-MAH(CD-AN-MAH),进一步肟化得到β-CD/MAH-co-AO-co-MAH(CD-AO-MAH)。为了探索两种三元共聚物水凝胶在一定条件下对U(Ⅵ)、Th(Ⅳ)的吸附特性,研究了酸度、时间和温度对吸附过程的影响,进而观察U(Ⅵ)和Th(Ⅳ)的不同的吸附行为;结合动力学拟合、吸附等温线和热力学拟合解释U(Ⅵ)和Th(Ⅳ)与两种新材料间的相互作用机理。结果表明:一定酸度条件下,两种三元共聚物水凝胶对U(Ⅵ)和Th(Ⅳ)的吸附均是快速的动力学过程,服从准二级动力学模型;肟化后的CD-AO-MAH对U(Ⅵ)的吸附效果优于肟化前的CD-AN-MAH;且两种三元共聚物水凝胶对于U(Ⅵ)的吸附均优于对Th(Ⅳ)的吸附。再一次证明肟基对U(Ⅵ)有较好的选择性,肟化后的三元共聚物水凝胶可以做为选择性分离U(Ⅵ)的潜在材料。  相似文献   

6.
以顺丁烯二酸酐修饰的β-环糊精(β-CD)、丙烯腈(AN)和顺丁烯二酸酐(MAH)为单体,合成了功能化三元共聚物水凝胶β-CD/MAH-co-AN-co-MAH(CD-AN-MAH),进一步肟化得到β-CD/MAH-co-AO-co-MAH(CD-AO-MAH)。为了探索两种三元共聚物水凝胶在一定条件下对U(Ⅵ)、Th(Ⅳ)的吸附特性,研究了酸度、时间和温度对吸附过程的影响,进而观察U(Ⅵ)和Th(Ⅳ)的不同的吸附行为;结合动力学拟合、吸附等温线和热力学拟合解释U(Ⅵ)和Th(Ⅳ)与两种新材料间的相互作用机理。结果表明:一定酸度条件下,两种三元共聚物水凝胶对U(Ⅵ)和Th(Ⅳ)的吸附均是快速的动力学过程,服从准二级动力学模型;肟化后的CD-AO-MAH对U(Ⅵ)的吸附效果优于肟化前的CD-AN-MAH;且两种三元共聚物水凝胶对于U(Ⅵ)的吸附均优于对Th(Ⅳ)的吸附。再一次证明肟基对U(Ⅵ)有较好的选择性,肟化后的三元共聚物水凝胶可以做为选择性分离U(Ⅵ)的潜在材料。  相似文献   

7.
铀矿开采及铀分离纯化过程中产生的含铀废水可能严重污染环境和生态系统。利用吸附法分离含铀废水中的U(Ⅵ)既可有效回收铀资源,又能减轻环境污染。为达到高效分离含铀废水中U(Ⅵ)的目的,本文结合离子印迹及化学交联法制备了离子印迹壳聚糖(CS)/碳纳米管(CNT)(ICC)复合膜,采用静态吸附法考察了ICC对水溶液中U(Ⅵ)的吸附性能,并采用SEM、XRD、FTIR及XPS对吸附前后的ICC进行表征。表征结果表明,ICC具有多孔结构以及较丰富的功能基团(氨基、羧基),且CNT在壳聚糖基质中均匀分散。吸附实验结果表明:利用不同原料配比所制备的ICC中,以CS与CNT质量比为1∶0.3的ICC-2对U(Ⅵ)吸附性能最佳,是由于其具有丰富的孔结构以及经离子印迹产生的大量与铀酰离子匹配的空腔;ICC吸附U(Ⅵ)的吸附等温线符合Langmuir模型,在pH=5.0、298 K时,最大吸附容量达215.83 mg/g;吸附动力学符合准二级动力学模型,表明以化学吸附为控速步骤;ICC-2能选择性去除水溶液中的U(Ⅵ),且吸附过程为自发吸热过程。吸附U(Ⅵ)的ICC-2利用0.2 mol/L HNO...  相似文献   

8.
利用文献报道的Th(NO3)4-UO2(NO3)2-HNO3-H2O/30%TBP-正十二烷体系各组分的分配比实验数据对现有的分配比模型进行分析和比对,提出了一个计算该体系各组分分配比的新模型。利用34组实验数据对新模型进行了验证,符合情况良好。计算结果表明,本文提出的模型明显优于原模型,可作为Th(NO3)4-UO2(NO3)2-HNO3-H2O/30%TBP-正十二烷萃取体系中Th(Ⅳ)、U(Ⅵ)和HNO3萃取行为计算机模拟的基础。模型建立的条件为:温度,25℃;U(Ⅵ)浓度,0~100g/L;Th(Ⅳ)浓度,0~232g/L;硝酸浓度,0~4.5mol/L。  相似文献   

9.
同时以硝酸锰和硝酸钴为印迹分子,采用溶胶凝胶法和反相悬浮法结合制备了交联壳聚糖微球(Co/Mn-CCTS),并通过与半胱氨酸的氨基官能团接枝合成了钴/锰双印迹半胱氨酸-壳聚糖树脂(CysCo/Mn-CCTS)。采用傅里叶红外光谱、扫描电镜对其结构进行了表征,并进行了干扰离子存在下低浓度Co2+和Mn2+静态、动态以及竞争吸附实验。静态实验结果表明,双印迹半胱氨酸-壳聚糖树脂较非印迹树脂的吸附性能有较大提高;干扰离子存在下,树脂对Co2+、Mn2+二元混合溶液中Co2+的吸附性能优于Mn2+,且对Co2+的吸附容量超过Mn2+的16倍。溶液的pH值、温度、吸附时间、干扰离子以及金属离子初始浓度均对树脂的吸附性能有较大影响,树脂对Co2+、Mn2+的吸附过程符合Lagergren准二级动力学和Langmuir模型。动态吸附实验表明,树脂对Co2+、Mn2+的吸附符合Thomas模型,对二者的穿透体积分别为308BV与506BV。  相似文献   

10.
乙二胺改性壳聚糖磁性微球吸附Hg   总被引:2,自引:0,他引:2  
采用化学交联-种子溶胀法制得乙二胺改性壳聚糖磁性微球(EMCS),考察了其对水溶液中Hg2 和UO22 的吸附性能。结果表明,EMCS粒径为50-80μm,氧化铁质量分数(w)为16%,该吸附剂在pH<2.5时可选择性吸附Hg2 和UO22 ,吸附容量随pH升高而增加;其吸附等温线用Langmuir方程拟合为:ceq/Qeq=0.440 5ceq/Qm 0.584 0(Hg2 ,r=0.996 0),ceq/Qeq=0.525 6ceq/Qm 1.343 4(UO22 ,r=0.990 6);饱和吸附容量Qm分别为2.27,1.90 mmol/g,高于磁性壳聚糖微球MCS和壳聚糖微球CS;其吸附动力学可用Lagerg-ren方程拟合为:lg(Qeq-Q)=0.361 2-0.015 5t(Hg2 ,r=0.982 1),lg(Qeq-Q)=0.302 7-0.011 2t(UO22 ,r=0.992 5);对Hg2 ,UO22 的吸附速率常数(kad)分别为0.036,0.026 min-1;EMCS可用1 mol/LH2SO4再生,脱附率大于90%,有良好的重复使用性。  相似文献   

11.
针对污染水体中的放射性元素去除问题,本工作研究了Th(Ⅳ)在氧化石墨烯上的吸附动力学和热力学。结果表明:Th(Ⅳ)在氧化石墨烯上的吸附动力学服从准二级动力学方程;吸附等温线可以用Langmuir和Freundlich方程描述;吸附是吸热自发过程。氧化石墨烯对Th(Ⅳ)具有很强的吸附能力,是一种用于放射性元素富集固化的具有潜在应用价值的材料。  相似文献   

12.
以壳聚糖(CTS)和生物炭(AC)为原料,采用原位沉淀法制备了壳聚糖-生物炭(CTS-AC)复合材料,研究了吸附时间、铀初始浓度、初始pH值、温度和干扰离子等因素对CTS-AC吸附U(Ⅵ)的影响,探讨了CTS-AC对U(Ⅵ)的吸附动力学、等温线,采用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM-EDS)及比表面积分析(BET)等手段进行了相关机理分析。实验结果表明,CTS-AC吸附U(Ⅵ)的最佳条件为:pH=4、CTS-AC投加量0.8~1 g/L、吸附时间240 min,在此条件下,最大吸附率可达94.85%。CTS-AC对U(Ⅵ)的吸附等温线模型符合Langmuir模型,U(Ⅵ)的吸附动力学符合准二级模型;高浓度Cu2+对CTS-AC吸附U(Ⅵ)的抑制作用明显;FT-IR、XRD和EDS结果表明,CTS的负载未改变AC的原结构,仅增大了其孔径、增加了结合位点。CTS-AC对U(Ⅵ)的吸附机制为配位作用以及离子交换。  相似文献   

13.
研究了氨基羟基脲(HSC)与Pu(Ⅳ)的还原反应动力学,其动力学方程式为:-dc(Pu(Ⅳ))/dt=kc(Pu(Ⅳ))c1.06(HSC)c-0.43(H+)c-0.58(NO3-),在22.1℃时反应速率常数k=(11.8±1.1)(mol/L)-0.046•s-1,活化能为(71.0±1.0)kJ/mol。研究了氨基羟基脲浓度、H+浓度、硝酸根浓度、Fe3+浓度、UO22+浓度对氨基羟基脲与Pu(Ⅳ)还原反应速率的影响,增加氨基羟基脲浓度,降低H+浓度、硝酸根浓度,Pu(Ⅳ)还原速度增加;UO22+浓度和Fe3+浓度对Pu(Ⅳ)还原速度基本无影响。  相似文献   

14.
制备了三聚磷酸钠交联壳聚糖/纳米Fe~0(CS-Fe)复合膜,并将其用于吸附U(Ⅵ),考察了pH值对CS-Fe复合膜吸附U(Ⅵ)的影响,以及吸附动力学和吸附等温线。结果表明,吸附等温线符合双位点Langmuir模型,以CS-Fe复合膜的磷酸基团为主要吸附位,纳米Fe~0为次要吸附位。吸附动力学符合准二级模型,表明化学吸附是控速步骤。CS-Fe复合膜对U(Ⅵ)的饱和吸附容量(208.8mg/g)远高于壳聚糖膜对U(Ⅵ)的饱和吸附容量(131.6mg/g),这是由于壳聚糖促进了纳米Fe~0的分散以及纳米Fe~0还原U(Ⅵ)的共同作用。  相似文献   

15.
Th(Ⅳ)在高庙子膨润土上的吸附行为   总被引:1,自引:1,他引:0  
采用静态批式法研究了Th(Ⅳ)在高庙子膨润土上的吸附行为。探讨了接触时间、pH、离子强度、固液比以及腐殖酸对吸附的影响。测定了293.15 K下的吸附等温线。实验结果表明,pH和离子强度对Th(Ⅳ)吸附的影响很大,腐殖酸在低pH下促进Th(Ⅳ)在高庙子膨润土上的吸附,而在高pH下几乎没有影响;Th(Ⅳ)在高庙子膨润土上的吸附主要通过表面络合和离子交换进行;Langmuir方程可以很好的拟合吸附等温线。  相似文献   

16.
2,6-吡啶二羧酸(DPA,以H2C表示)是一种可用于乏燃料后处理Purex流程高保留钚废有机相中钚洗脱的洗脱剂。为将DPA洗脱液中的钚与铀分离并回收钚,本文通过静态吸附实验研究了DPA-Pu(Ⅳ)/U(Ⅵ)配合物在强碱性阴离子交换树脂DOWEX 1上的吸附性能,考察了DPA浓度、酸度、温度以及主要辐解产物对DOWEX 1吸附钚和铀的影响。培养了DPA与U(Ⅳ)/U(Ⅵ)配合物的单晶并测定了其结构,通过配合物晶体与吸附金属离子树脂光谱的对比确定了Pu(Ⅳ)(以U(Ⅳ)模拟代替)和U(Ⅵ)吸附在树脂上的配合物形态,通过变温吸附实验获得了相应吸附反应的热力学数据。吸附实验结果表明,DOWEX 1树脂能在低酸(0.1 mol/L HNO3)条件下同时吸附钚和铀,在高酸(8 mol/L HNO3)条件下只吸附钚不吸附铀。根据上述实验所得结果,提出低酸吸附铀/钚、高酸柱上转型除铀、低酸解吸回收钚的方案,并进行了实验验证。结果表明,采用所提出的回收钚的方案,钚的回收率达96%,对铀的去污因子约为2.8×103。  相似文献   

17.
Fe3O4纳米磁性微粒对钴和锶的吸附   总被引:1,自引:0,他引:1  
为降低90Sr和60Co对环境的污染,用共沉淀法制备了粒径为10 nm的Fe3O4磁性微粒,分散于水中生成饱和磁化强度(M)为350 kA/m的水基磁流体,用此磁流体对Co2+, Sr2+进行了吸附研究。结果表明,在45 ℃,吸附60 min时,Co2+, Sr2+分别在pH=7和pH=8下达到吸附平衡,吸附容量为1.794, 0.962 mmol/g。用Langmuir等温模型、假二级动力学模型探讨了Fe3O4纳米磁性微粒对Co2+, Sr2+的吸附机制,研究结果表明,该过程是单离子层吸附过程。  相似文献   

18.
磷酸酯功能化介孔硅材料对钍(Ⅳ)的吸附性能   总被引:2,自引:2,他引:0  
钍作为潜在的核能资源,其净化富集对未来核能发展具有重要的研究价值。本文利用静态批式方法研究磷酸酯功能化介孔硅材料(NP10)对Th(Ⅳ)的吸附行为,考察Th(Ⅳ)起始浓度、pH、吸附时间、离子强度、固液比以及温度等对吸附的影响。实验结果表明,在(14±1)℃(室温)条件下,NP10对Th(Ⅳ)的吸附30min即达到平衡,最大吸附容量为149mg/g。当吸附温度升至40℃时,吸附容量可进一步增加到192mg/g;pH对吸附的影响较大,当pH在0.9~4范围内时,NP10对Th(Ⅳ)的吸附容量随着pH增大而显著增大;相比而言,溶液离子强度对吸附影响不大;此外,固液比对吸附影响很大,随着吸附剂用量增加,NP10对Th(Ⅳ)的吸附效率逐渐增加并趋于100%。  相似文献   

19.
采用Hummers方法和化学共沉淀方法,合成了磁性氧化石墨烯(M/GO)材料,并以此作为吸附剂材料,采用静态批式实验方法研究了其对Co(Ⅱ)的吸附去除机理。结果显示M/GO具有良好的饱和磁场强度,易于利用外加磁场实现吸附后的固-液分离。Co(Ⅱ)在M/GO表面的吸附几乎不受背景离子强度的影响,而受pH的影响显著。其吸附可快速达到平衡,吸附动力学符合准二级速率方程。升高温度可有效促进吸附。吸附等温过程符合Langmuir模型。热力学参数的分析表明Co(Ⅱ)在M/GO表面的吸附为自发吸热过程。  相似文献   

20.
采用Hummers方法和化学共沉淀方法,合成了磁性氧化石墨烯(M/GO)材料,并以此作为吸附剂材料,采用静态批式实验方法研究了其对Co(Ⅱ)的吸附去除机理。结果显示M/GO具有良好的饱和磁场强度,易于利用外加磁场实现吸附后的固-液分离。Co(Ⅱ)在M/GO表面的吸附几乎不受背景离子强度的影响,而受pH的影响显著。其吸附可快速达到平衡,吸附动力学符合准二级速率方程。升高温度可有效促进吸附。吸附等温过程符合Langmuir模型。热力学参数的分析表明Co(Ⅱ)在M/GO表面的吸附为自发吸热过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号