首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对气田开发过程中会产生大量含硫污水,且采用传统絮凝沉淀法处理此类污水存在处理周期长、污泥产量大的缺点,首次提出将超重力技术应用于处理含硫污水。设计并搭建了一套超重力臭氧氧化处理S2-的实验装置,探究超重力因子、含硫污水pH值、臭氧浓度、液相进口压力、溶液温度等工艺参数对超重力臭氧氧化处理含硫污水的处理效果的影响。确定在实验工况下的最优工艺参数为:超重力因子为145.02,pH值为9.0,臭氧浓度为30mg/L,液相进口压力为0.15MPa,温度为50℃。在最优工艺参数下,能够获得很好的污水处理效果,可实现99.2%的脱硫率,污水残留S2-浓度仅为0.64mg/L。  相似文献   

2.
针对目前普光气田高含硫污水气提脱硫率低的问题,通过采用“曝气+负压气提+尾气催化氧化”工艺技术,设计正交实验,优选出最优负压气提脱硫操作条件为:污水pH值4.0、温度20℃、气提真空度-0.02 MPa、空气曝气气液体积比20∶1,污水负压气提脱硫率高达94%。各操作条件对脱硫率的影响由强到弱顺序为:空气曝气气液比、污水pH值、气提真空度和污水温度。实验优选出铁基离子液体作为尾气脱硫催化剂。结果表明,铁基离子液体中Fe 3+对H 2S氧化速率很快,净化后尾气中H 2S质量浓度为0 mg/m^3,氧化产物为单质S,同时离子液体可通过空气将Fe 2+氧化成Fe 3+,实现低成本循环利用,解决了含硫尾气燃烧的SO 2排放问题。  相似文献   

3.
气提塔是油田生产中处理含硫污水的新型、高效、节能装置。某油田含硫污水具有高矿化度、高氯离子、高硫化氢特点,采用气提塔对含硫污水进行处理,脱除污水中的H_2S,降低H_2S对油田设备、管道等设施的腐蚀效果。为确保污水中H_2S以游离态形式存在污水中,在气提塔上游加入酸度调节剂,提高气提塔脱硫效果,并防止H_2S脱除后污水p H值升高导致腐蚀结垢趋势增大,影响塔的脱硫效果及正常运行。通过对硫酸、盐酸、柠檬酸脱硫评价实验,以加药量、脱除率和失钙率为评价指标,确定柠檬酸适宜作为油田含硫污水气提塔脱硫处理的酸度调节剂。本研究为今后油田含硫污水处理酸度调节剂筛选提供试验方法、评价参数,同时为高矿化度、高氯离子、高硫化氢的含硫污水处理提供酸度调节剂筛选范围。  相似文献   

4.
自制CO2和H2S混合气模拟焦炉煤气,以碳酸钠溶液作为脱硫碱液,用超重力设备作为脱硫实验的主体吸收设备,考察了超重力因子,液气比,原料气中CO2浓度等对脱硫率的影响。实验表明:利用碱液对CO2和H2S的吸收速率的差异,通过旋转填料床强化传质能明显的提高H2S的选择性。实验表明:利用碱液对CO2和H2S的吸收速率的差异,通过旋转填料床强化传质能明显的提高H2S的选择性。实验考察各因素及其范围:原料气中H2S浓度为3g/m3;CO2的浓度为7g/m3~14g/m3;进气速度为1m3/h~6m3/h;超重力因子为25.82~75.91;进液速度为60 L/h~180 L/h。实验中脱硫率基本可以达到95%以上,选择性(H2S和CO2脱除率之比)可以达到30左右。最佳的超重力因子为63.79,最佳液气比为50L/m3。  相似文献   

5.
工业气体中H2S的脱除对于合理利用资源及环境保护意义重大。本文将超重力设备-超重机作为吸收设备,采用湿式氧化法脱除气体中H2S,在处理煤气量为10000Nm3/h的规模上进行工程化应用研究。考察了碱源种类及浓度、液气比、超重力因子、原料气中H2S含量等工艺参数对脱硫效率的影响规律,确定了适宜的工艺条件;在适宜的条件下,获得了98.0%以上的脱硫效率。连续运行结果表明:超重力湿式氧化法脱硫工艺,脱硫效率高且稳定、液气比小、脱硫设备体积小,操作弹性大,节能降耗。  相似文献   

6.
以超重力旋转填料床为脱硫设备,采用络合铁溶液对石油伴生气中的H2S进行净化研究。采用响应曲面法建立脱硫率与铁离子浓度、液气比、超重力因子之间的BBD模型,研究结果表明该法可有效地优化脱硫效果。在铁离子浓度为0.16mil/L,液气比为20.67L/m3,超重力因子为87时,针对H2S浓度为7g/m3的石油伴生气脱硫率可达98.81%。采用XRD和SEM对产物硫磺进行表征,研究结果证明硫磺颗粒大、易团聚,有利于固液分离。  相似文献   

7.
以H2S和N2模拟含硫工业气体,以错流旋转填料床为脱硫设备,采用自制的络合铁脱硫液进行脱硫实验。考察了不同配方溶液、气体流量、脱硫液流量、液气比、超重力因子等因素对脱硫率的影响。研究结果表明,配方溶液工作硫容可达4.25g/L;在气液接触时间仅为0.6s的情况下,脱硫率达到94%以上。错流旋转填料床络合铁法脱硫工艺可实现快速、高效脱硫,且脱硫设备体积小、操作弹性大,符合节能减排的发展趋势,有广阔的发展空间。  相似文献   

8.
针对炼厂加热炉用燃料气中低浓度硫化物,特别是有机硫化物,利用自主研发的深度脱硫吸收剂,考察并优化了超重力吸收脱硫工艺。结果表明:当模拟炼厂燃料气的进气总硫质量浓度为80~100 mg/m3时,在超重力机的床层填料为不锈钢波纹丝网,超重力因子为66,进气量为4 m3/h,液气比(吸收剂循环量与进气量的流量之比)为6 L/m3的最优超重力吸收深度脱硫工艺条件下,燃料气的总硫去除率高达96.4%。在3种进气总硫质量浓度为80~100,50~60,20~30 mg/m3情形下,模拟炼厂燃料气脱硫效果比较稳定,总硫去除率均大于90.1%,出气总硫质量浓度均小于4.62 mg/m3。  相似文献   

9.
H_2S是一种有毒有害气体,故天然气在使用之前必须进行脱硫处理。而超重力旋转填料床因其在巨大的剪切力作用下强化了传质,大大增加了设备的生产能力,且装置尺寸远远小于传统塔设备。超重力技术与氧化还原法结合在天然气脱硫领域具有较好的应用价值。因此,建立一个实用可靠的传质系数模型,对超重力技术脱硫的研究具有重要意义。用CH_4和H_2S的混合气模拟含硫天然气,并在某中试装置上用络合铁氧化还原法进行脱硫。根据所得的数据及旋转填料床中气液接触的特性,包括气体流量、液体流量、转子转速对体积传质系数的影响,采用Matlab进行相关数据拟合分析,得到传质系数经验模型。对经验模型进行分析对比,根据超重力装置气液传质的特性对经验模型进行了改进,得到最终的传质系数经验模型。最后,将建立的传质系数经验模型与实验得到的数据进行对比验证。经分析对比,模型与实验数据吻合程度较高,平均偏差仅为0.12%,且该模型可以外推到其他体积与该超重力装置近似的装置,但气体流量应为1~10 m~3/h,液体流量为0.1~1 m~3/h,转速为100~1 500r/min。  相似文献   

10.
超重力旋转填料床中柠檬酸钠法脱除低浓度SO_2   总被引:1,自引:0,他引:1  
在超重力旋转填料床中以柠檬酸-柠檬酸钠缓冲溶液为吸收液进行模拟烟气中SO2吸收的实验。考察了超重力因子(β)、液气比(L/m3)、入口烟气中SO2质量浓度、气体流量、吸收液中柠檬酸浓度、pH值等对SO2脱除率(η)和气相传质系数(KGa)的影响。实验结果表明,η和KGa随超重力因子、液气比(L/m3)、吸收液中柠檬酸浓度和pH的增加而增加,随入口烟气中SO2浓度的增加先增大后降低,随气体流量的增加而降低。采用超重力旋转填料床用柠檬酸-柠檬酸钠缓冲溶液吸收SO2的最佳工艺条件是:吸收液中柠檬酸浓度1.0mol/L,初始pH 4~5,液气比3L/m3~7L/m3,超重力因子54.53~90.14。在此条件下,出口气体中SO2质量浓度低于80mg/m3,η稳定在98%左右。  相似文献   

11.
目的捕集和检测带压含硫气田水常规减压取样过程排放闪蒸气中损失的H_(2)S组分,以实现带压含硫气田水中H_(2)S含量更加准确的测定,为优化和提升闪蒸气H_(2)S处理装置的设计和净化效率提供数据支撑。方法针对当前气田水减压平衡处理后H_(2)S测定结果明显偏低的问题,从带压液体取样和H_(2)S气体分析检测两个方面开展研究,讨论了取样装置、取样方法、分析检测方法、样品前处理、酸液用量和汽提时间等参数的影响。结果实现了等压取样,汽提时间为5 min,样品无须过滤前处理,解吸液为去离子水,以经典碘量法检测H_(2)S。结论通过比较实际样品带压和减压条件下H_(2)S含量的测定结果,表明该技术对准确测定带压含硫气田水中H_(2)S含量更加可靠,并将对其他带压溶液中溶解性气体的测定提供可借鉴的思路。  相似文献   

12.
以含硫污水汽提酸性气为原料,采用LO-CATⅡ专利技术,延安炼油厂建成了硫磺回收装置。结果表明,回收后废气中H2S排放量小于10×10-6,累计回收硫磺6 300 t。  相似文献   

13.
为了减少塔中联合站处理装置中大量高含H2S原油对非抗硫工艺管线和设备造成的严重腐蚀,消除外输原油和天然气H2S浓度严重超标带来的安全隐患,中国石油塔里木油田公司借鉴国内首套重质原油干法汽提脱硫装置在塔河油田三号联合站试验成功并且安全平稳运行的经验,在塔中作业区水平一转油站建成了日处理能力1 000 t的汽提法原油脱硫装置,对塔中一号气田试采单井原油进行脱硫处理,通过对温度、进液量及汽提比等参数进行不断优化将装置调整到最佳运行状态,采用3018固体脱硫剂对汽提脱硫装置中产生的高含H2S尾气进行全部回收,有效地防止了大气污染。  相似文献   

14.
含硫气田水含硫化物、有机物等污染物,恶臭味大,易挥发,对周边环境和人员的影响及危害大。随着国家新《环境保护法》的实施,对含硫气田水的处理提出了更高要求。针对高磨地区含硫气田水的恶臭治理问题,简要概述了目前国内外含硫气田水脱硫除臭处理技术及其优缺点和适用条件,介绍了安岳气田高磨区块含硫气田水的处理现状。主要通过拉运和管输的方式将闪蒸后的气田水送至回注站处理后回注;结合现场含硫气田水化学除臭探索性试验,探讨了高磨地区含硫气田水拉运除臭的处理工艺和硫化物控制指标;对含硫气田水拉运除臭提出了先采取闪蒸或联合燃料气气提工艺脱硫,将水中硫化物质量浓度降至300 mg/L以下,然后再加注液体脱硫剂进行化学除臭的处理工艺,将处理后水中硫化物质量浓度控制在20 mg/L以下。   相似文献   

15.
以脱硫吸附剂生产装置产生的废气为原料,采用填料塔对尿素/O3湿法废气脱硝技术进行了实验研究,考察了废气流量、O3流量、O3氧化级数等因素对NOx脱除效果以及脱硝率的影响,并与已应用的超重力/吸收塔尿素湿法废气脱硝技术进行了对比。结果表明,尿素/O3湿法废气脱硝法的最佳处理条件为废气流量8.6 m3/h、O3流量1.5 m3/h、三级O3氧化处理,在该条件下废气脱硝率达到99.9%,处理过的废气中NOx浓度低于100 mg/m3,其处理效果优于超重力/吸收塔尿素湿法废气脱硝技术,具有很好的工业应用价值。  相似文献   

16.
采用氯磺酸磺化法合成了一种含有磺酸基和羧基的新型络合剂磺化戊二酸(SG),用SG与乙二胺四乙酸、柠檬酸、FeCl3配制出一种三元络合铁脱硫体系。在连续脱硫装置中考察脱硫液与硫化氢气体体积比、装置运行时间、填料高度等脱硫工艺条件对复配脱硫体系脱硫效率的影响,在再生装置中考察空气流量、再生时间、再生温度等再生工艺条件对复配脱硫体系再生率的影响。结果表明:在脱硫液与硫化氢气体体积比为0.134、填料高度为0.4 m、脱硫温度为40 ℃、初始pH为 8.0的条件下,原料气中的H2S质量浓度可由227.679 g/m3降到0.011 g/m3,脱除率达99.99%;在空气流量为125 L/h、再生时间为30 min、温度为30 ℃、初始pH为8.0的条件下,脱硫剂的再生率达93.24%。  相似文献   

17.
以中国石油兰州石化分公司提供的炼油厂C4馏分为原料,采用溶剂抽提法进行脱硫实验,对脱硫剂和脱硫方法进行评选,并对脱硫工艺条件及脱硫剂再生条件进行考察。结果表明:最佳脱硫剂为SW-Ⅰ,C4馏分在SW-Ⅰ中的溶解度仅为6.53×10-5 g/g;最佳脱硫方法为气-液吸收法;在温度为20℃、脱硫剂空速为0.15 h-1、C4空速为350h-1和吸收级数为3的条件下,以SW-Ⅰ为脱硫剂,采用气-液吸收法可使C4馏分中有机硫含量从198.9 μg/g降到7.5 μg/g,脱硫率为96.23 %;对脱硫剂进行热空气汽提再生处理,在再生温度为70 ℃、脱硫剂空速为1.02 h-1和汽提空气空速为291 h-1的最佳条件下,再生脱硫剂的脱硫率为96.03 %,脱硫剂的再生率可达99.80 %。  相似文献   

18.
高酸性天然气脱硫脱碳工艺技术研究   总被引:1,自引:1,他引:0  
针对原料气中H2S和CO2摩尔分数均达到20%的高酸性天然气净化,通过工艺模拟计算结合室内实验评价的手段,筛选出一种具有良好脱硫性能、选择性及高酸气负荷的选择性脱硫溶剂CT8-5。通过室内实验进行工艺优化后,提出了包括气液比、吸收塔塔板数、贫液温度、再生温度等在内的一系列工艺参数。结果表明,在气液比为200的条件下,净化气中H2S质量浓度为3.9 mg/m3,CO2摩尔分数为1.86%,完全能满足GB 17820-2018《天然气》国家标准中对商品气的气质要求。对GB 17820-2018发布实施后高酸性天然气处理所面临的问题进行了探讨,提出了建议,可为高酸性天然气的气质达标处理提供技术思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号