首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
《石油化工》2016,45(11):1293
在酸催化下将异丁烷和丁烯进行烷基化反应是制备高辛烷值烷基化汽油的重要途径。介绍了传统无机酸催化烷基化工艺;综述了近年来催化制备高辛烷值烷基化汽油的研究进展,包括离子液体和固体酸催化剂,重点分析了酸性离子液体在催化制备高辛烷值烷基化汽油中的应用,评价了不同催化剂的优缺点;对未来用于制备高辛烷值烷基化汽油的催化剂进行了展望。  相似文献   

2.
综述了近年来离子液体催化碳酸酯参与的绿色有机反应的研究进展,主要介绍了离子液体催化亲核试剂与碳酸酯的烷基化反应,包括甲基化反应和羟烷基化反应;离子液体催化亲核试剂与碳酸酯的酯基化反应,包括脂肪胺、芳香胺和吲哚的酯基化反应。对离子液体催化亲核试剂与亲电试剂的反应,特别是碳酸酯参与的绿色反应的发展和应用前景进行了展望。  相似文献   

3.
《石油化工》2016,45(10):1272
固体酸催化剂解决了传统烷基化油催化剂的腐蚀性、污染严重等问题,但失活快、产量低,酸性离子液体的催化效果可达传统烷基化油催化剂水平,且产物易分离、可重复利用性好。介绍了酸性离子液体及其催化异丁烷/丁烯烷基化的机理;综述了3种酸性离子液体体系催化异丁烷/丁烯的性能,包括L酸离子液体、B酸离子液体以及B-L双酸性离子液体;主要分析了金属卤代物、B酸及其他促进剂对L酸性离子液体体系催化性能的影响。对催化异丁烷/丁烯烷基化用酸性离子液体的发展方向提出了展望。  相似文献   

4.
离子液体催化邻甲酚与叔丁醇烷基化反应   总被引:1,自引:0,他引:1  
 以烷基胺、吡啶、咪唑等为原料合成了SO3H-功能化的离子液体(ILs)。采用 NMR、TG DTG 对离子液体的结构及物性进行了表征,并考察其在邻甲酚(o-Cresol)和叔丁醇(TBA)烷基化反应中的催化性能。考察了反应条件对离子液体催化邻甲酚烷基化反应的影响,以及离子液体的重复使用性,比较了离子液体与常规酸催化剂在邻甲酚叔丁醇烷基化反应中的催化性能。结果表明,以N-(4-磺酸基)丁基三乙胺硫酸氢盐离子液体(IL2)为催化剂,在优化条件(θ=80℃,t=6 h,n(o-Cresol)∶n(TBA)∶n(IL2)=1∶1∶0.2)下,邻甲酚的转化率、6-叔丁基邻甲酚(6-TBC)的选择性可分别达到80.9%和44.1%,优于液体酸和固体酸的催化效果。  相似文献   

5.
 采用烷基化法合成均三异丙苯。对离子液体催化剂进行筛选,对苯与丙烯在离子液体催化下合成三异丙苯的烷基化反应工艺条件进行考察,采用过烷基化方法提高反应产物的n(均三异丙苯)/ n(偏三异丙苯),通过精馏方法提纯均三异丙苯。结果表明,较好的离子液体催化剂为2AlCl3/Et3NHCl;确定的较好的反应条件为:离子液体体积分数为10%,反应温度为50℃,丙烯用量为3.50mL/s。  相似文献   

6.
用Et3NHCl-AlCl3离子液体催化异丁烷/丁烯的烷基化反应   总被引:13,自引:0,他引:13  
用盐酸三乙基胺和无水AlCl3构成的离子液体催化异丁烷与丁烯的烷基化反应。结果表明,该室温离子液体有着较好的催化活性,当参与合成的无水AlCl3摩尔分数为0.67,烷基化反应温度为65℃时,丁烯转化率达100%,烷基化油收率达到转化的丁烯体积的160%以上,对C8的选择性为50%以上,并且离子液体可以重复使用。  相似文献   

7.
对SO3H-功能化离子液体[HSO3-bmim]HSO4催化苯酚与环己醇的烷基化反应进行研究,考察反应温度、反应时间、离子液体用量、反应物摩尔比等因素对烷基化反应转化率和选择性的影响,考察离子液体循环使用性能。结果表明,在反应温度200℃、n(苯酚):n(环己醇):n(离子液体)=14:10:1、反应时间6h的条件下,苯酚的转化率可达到75.7%,对环己基苯酚的选择性为61.6%,且离子液体重复使用3次后,其催化活性没有明显变化。  相似文献   

8.
Friedel-Crafts反应是生产精细化工产品的极其重要的反应,许多生产精细化工产品和药物的工业过程都有Friedel-Crafts反应的中间步骤。由于用于生产线性烷基苯(LABS),本文重点讨论苯与烯烃的烷基化反应。为了改进反应条件,本文研究了FeCl3/bmimCl离子液体催化苯与烯烃烷基化反应的催化行为。为此,分别研究了不同离子液体酸度、温度、压力、苯烯比对反应的影响。  相似文献   

9.
连续式离子液体催化芳烃烷基化   总被引:1,自引:0,他引:1  
葸雷  彭朴  段启伟  陆婉珍 《石油化工》2005,34(8):725-728
以离子液体为催化剂,采用间歇式和连续式烷基化装置,研究了C20~C28长链α烯烃和芳烃烷基化制备长链烷基苯和长链烷基甲苯的工艺。得出连续式离子液体催化烷基化的最佳反应条件:原料水含量为30μg/g、反应温度为80℃、苯与烯烃摩尔比为12∶1(甲苯与烯烃摩尔比为6∶1)、离子液体与烯烃质量比为0.004;在此条件下,烯烃转化率均大于99.9%,单烷基苯和单烷基甲苯选择性分别大于85%和90%。连续式烷基化的最佳催化剂用量仅为间歇式烷基化催化剂用量的一半。  相似文献   

10.
室温离子液体是由特定的阳离子和阴离子构成、在室温或近于室温下呈液态的熔盐体系,具有独特的性质和功能。用制备的氯铝酸盐室温离子液体作催化剂,催化苯和环己烯进行烷基化反应,考察了苯与环己烯摩尔比、反应温度、反应时间对烷基化反应产物收率的影响,研究了离子液体的催化活性和稳定性。结果表明:以制备的氯铝酸盐离子液体为催化剂,在反应温度30℃、反应时间4h、苯烯摩尔比16:1的条件下,所得环己基苯的产物收率最高,为70.5%。制备的离子液体重复使用3次,产物收率仍达53.6%,说明该离子液体具有一定的稳定性。  相似文献   

11.
The alkylation mechanism catalyzed by an ionic liquid (as a Lewis acid) may be different from the traditional alkylation mechanism catalyzed by Br nsted acid,especially as their initiation steps are still not clear.In this paper,an isotope exchange method is used to investigate the catalytic mechanism of AlCl 3 /butyl-methyl-imidazolium chloride ionic liquid in the alkylation of benzene with 1-dodecene.The proposed catalytic mechanism was confirmed by analysis of ionic liquid before and after reaction and of the alkylation products of deuterated benzene (C 6 D 6) with 1-dodecene.The proposed mechanism consists of the equilibrium reaction between [Al 2 Cl 7 ] +H + and [AlHCl 3 ] + +[AlCl 4 ],in which the Br nsted acid [AlHCl 3 ] + is supplied by the reaction of 2-H on the imidazolium ring and [Al 2 Cl 7 ].The alkylation reaction is initiated by the Br nsted acid [AlHCl 3 ] + which reacts with 1-dodecene to form a carbonium ion,then the carbonium ion reacts with benzene to form an unstable σ complex,leading to the formation of 2-phenyldodecane.  相似文献   

12.
封超  陈立宇  张秀成 《石油化工》2012,41(8):928-932
通过Aspen-Plus软件对釜式反应器内苯胺与丙烯的气液平衡进行模拟,并对釜式反应器与高压液相喷射反应器(LJR)内苯胺与丙烯烷基化反应合成2,6-二异丙基苯胺(DIPA)进行了实验对比,分析了DIPA收率低的原因。在LJR内考察了反应温度、反应压力、反应时间和液体循环速率对烷基化反应的影响。实验结果表明,在相同反应条件下,在LJR内苯胺转化率和DIPA的选择性均比釜式反应器内高20%以上;在反应温度300~310℃、反应时间6~8 h、液体循环速率10~12次/h的条件下,苯胺的转化率大于80%,DIPA的选择性大于40%。在设备允许的情况下,应尽可能提高反应过程的压力。  相似文献   

13.
孙海  刘靖  郭汝生 《天然气化工》2003,28(2):42-45,62
传统的固体酸催化的烷基化反应催化剂易积炭失活,使反应在超临界流体中进行,可以有效地解决这个问题。本文对超临界条件下烷基化反应的研究进行了回顾。  相似文献   

14.
以CT175树脂为催化剂,考察了噻吩与异丁烯烷基化的反应性能。研究结果表明,CT175树脂催化剂在常压、80℃、气体(异丁烯与氮气摩尔比为1/1)流量7.5 ml/min、反应液体原料(含4 g/L噻吩的苯溶液)质量空速2.64h-1的条件下,噻吩烷基化转化率高达99%以上。并用不同原料对CT175树脂催化噻吩与异丁烯烷基化反应中的失活行为及再生性能进行了考察,研究发现,原料中的二烯烃是导致催化剂失活的主要原因,失活后的催化荆的再生实验表明此催化剂有良好的再生性能。  相似文献   

15.
徐新  罗国华  王莉 《石油化工》2012,41(1):33-36
以氯铝酸离子液体([Et3NH]Cl-AlCl3)为催化剂,催化苯与氯乙烷烷基化反应合成乙苯,考察了反应投料方式、原料配比、反应温度、反应时间和[Et3NH]Cl-AlCl3用量对烷基化反应的影响,并对比了[Et3NH]Cl-AlCl3和AlCl3的催化效果。实验结果表明,在间歇式和半间歇式两种投料方式下,最佳反应条件均为:反应温度70℃,n(苯)∶n(氯乙烷)=(8.0~10.0)∶1,催化剂用量为原料总质量的10%,反应时间20~30 min;半间歇式反应的苯转化率和乙苯选择性均高于间歇式反应,半间歇式反应的苯转化率可达到9.48%,乙苯选择性为93.65%;[Et3NH]Cl-AlCl3的催化活性明显高于AlCl3。  相似文献   

16.
介绍了乙苯生产方法,包括Monsanton公司的均相三氯化铝法,Lummus/UOP公司联合开发的分子筛液相法,Mobil/Badger公司开发的分子筛气相法,以及气-液相法与催化精馏结合的气-液-固三相法。综述了国内乙苯生产技术进展,包括石科院开发的苯和乙烯液相烷基化合成乙苯催化剂和工艺,液相烷基化反应乙烯转化率达100%,乙苯平均选择性86.5%;上海石化研究院开发的AB-96气相烷基化催化剂,各项性能指标达到进口催化剂水平;中科院大连化物所开发的气相烷基化反应和液相烷基转移反应优化组合的干气制乙苯第3代技术已工业化,第4代技术在中试,第5代技术在小试阶段。  相似文献   

17.
固体酸烷基化工艺发展现状   总被引:8,自引:1,他引:7  
程国香 《石化技术》1998,5(3):182-187
固体酸烷基化工艺具有环境友好的优点,许多炼油公司都在大力研究开发固体酸烷基化工艺。一些研究成果已进入中试阶段,并向工业化应用方向发展。本文简述了这一方面的发展过程,介绍了两种主要的烷基化工艺,并对研究过程中应注意的问题进行了讨论。  相似文献   

18.
The paper introduces the mechanism and kinetics of the alkylation of benzene with ethylene to produce ethylbenzene. The alkylation reaction mechanism that takes place in the surface of the ZSM-5 catalyst and the [bmim]Cl/FeCl3 ionic liquid catalyst is described; at the same time the alkylation reaction kinetics is put forward based on the corresponding mechanism. The method obtained aids in the understanding of the microcosmic process of alkylation for adapting to the necessity of industrialization.  相似文献   

19.
实验以苯胺、三乙胺、正溴丙烷、季铵盐、季鏻盐等为原料,苯胺与卤代烃烷基化在季铵盐离子液体催化下高选择性合成N-单烷基苯胺。考察了离子液体种类及用量、反应温度、三乙胺用量、苯环上的取代基性质等因素对反应的影响。实验结果表明,以四丁基氯化铵(TBAC)为催化剂,n(苯胺):n(TBAC):n(三乙胺)=20:1:40,反应温度60℃,不同取代基的苯胺N-单烷基化反应转化率大于80%,选择性大于85%,离子液体可回收并重复使用。  相似文献   

20.
固体酸催化剂上苯与长链烯烃烷基化反应动力学研究   总被引:7,自引:2,他引:5  
根据苯与长链烯烃烷基化反应动力学方程,笔者利用在负载杂多酸中孔分子筛催化剂上液-固相反应的实验数据进行参数估值,确定了反应速率常数、扩散系数、反应活化能和扩散活化能参数,建立了考虑内扩散影响的苯与长链烯烃烷基化反应动力学模型.结果表明,所建动力学模型具有较高的计算精度,符合苯与长链烯烃烷基化反应规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号