首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
采用百万吨级神华煤直接液化示范装置加氢稳定单元进料为加氢原料,在处理量300 mL加氢实验装置上考察了反应温度对煤直接液化循环溶剂性质的影响,并采用0.5 L搅拌式高压釜研究了煤在不同加氢深度循环溶剂中的液化效果。结果表明,随着溶剂加氢反应温度的升高,循环溶剂的硫、氮含量逐渐降低,氢/碳原子比增加;加氢反应温度由340℃升至380℃时,循环溶剂的芳碳率(fa)不断减小,供氢指数(PDQI)逐渐增大,供氢能力增强。采用380℃加氢反应的循环溶剂进行煤液化时,煤的转化率和油收率均达到最大值,分别为88.64%和57.63%。当溶剂加氢反应温度达到390℃时,循环溶剂的供氢指数出现降低,芳碳率增加,供氢能力减弱,煤在此溶剂中加氢液化的转化率和油收率均有所降低,分别为88.22%和55.17%。  相似文献   

2.
尾油循环对渣油悬浮床加氢裂化的影响   总被引:6,自引:2,他引:4  
利用中型悬浮床加氢试验装置,在氢压10MPa,温度430-450度,添加800ug/g多金属分散型催化剂的条件下,考察了克拉玛依炼厂常压渣油的加氢裂化性能,在总空速不变的条件下,将加氢后的尾油与新鲜原料混合,进行循环加氢裂化,采用了常压渣油循环,减压渣油不和减压蜡油加部分减压渣油循环3种方式,结果表明,尾油循环加氢裂化,可以提高轻油的收率,尾油中包含的催化剂仍具有催化活性,它可以减少产物中甲苯不溶物的生成量。  相似文献   

3.
以国内某炼油厂减压渣油为焦化原料,选用该厂焦化蜡油作为供氢剂,并将焦化蜡油切割成小于400℃馏分(A)、400~430℃馏分(B)和430~460℃馏分(C)3个窄馏分,测定了3个窄馏分的结构参数和供氢指数,并在相同的反应条件下,在减压渣油中分别掺炼质量分数10%的3个窄馏分,考察了各焦化产物的收率,并与纯减压渣油焦化反应进行了对比。结果表明:3个窄馏分供氢指数由大到小的顺序为ABC;掺炼窄馏分A的焦化反应液体收率明显高于纯减压渣油焦化反应;在3个窄馏分中,掺炼A时的液体收率最高,掺炼B时次之,掺炼C时最低,这与3个窄馏分供氢指数的测定结果一致。  相似文献   

4.
对曹妃甸减压渣油进行了综合利用研究。对该减压渣油进行丙烷脱沥青处理,得到脱油沥青和脱沥青油。将脱油沥青与绥中36-1减压馏分油的糠醛精制抽出油调合后,可生产满足GB/T 15180—2000技术要求的重交通道路沥青;将脱沥青油经加氢处理-蒸馏-加氢异构/加氢补充精制-蒸馏的组合工艺处理,生产的各馏分油的芳烃、硫、氮含量均极低,280~380 ℃馏分可作为优质溶剂油的原料,380~460 ℃馏分可作为APIⅡ类润滑油基础油,460 ℃以上馏分可以作为API Ⅲ类润滑油基础油。  相似文献   

5.
简讯     
丙烷脱沥青装置试产道路沥青石油五厂研究所和丙烷脱沥青装置的职工,于1978年12月在该厂丙烷脱沥青装置上试产成功道路沥青。1.原料大庆油减压渣油。2.主要操作条件处理量410~450吨/天,丙烷纯度86%以上,溶剂比(重)4.3~4.7,萃取塔顶温度68~70℃,萃取塔底温  相似文献   

6.
为了生产硫含量满足国V/国Ⅵ标准的车用汽油,中国石油兰州石化公司180万t/a催化汽油加氢脱硫装置增加了二段加氢脱硫单元以及相应的循环氢脱硫系统,然后针对运行中出现的富胺液外送不畅、富胺液携带油和烃、脱硫塔液位假指示的问题,实施了相应对策。运行结果表明:循环氢脱硫系统不仅能有效脱除加氢脱硫反应生成的H2S,降低循环氢中H2S含量,抑制了硫醇的生成,而且对提高该装置的循环氢纯度和脱硫率,降低装置氢耗和汽油研究法辛烷值(RON)损失具有重要作用;通过调控循环氢中的H2S含量从100 μg/g降低到50 μg/g,在一段、二段加氢脱硫单元反应温度为248 ℃时,一段、二段加氢脱硫单元脱硫率分别提高了6,4个百分点;在一段、二段加氢脱硫单元重汽油产品中含硫量分别为40,9 μg/g条件下,一段、二段加氢脱硫单元的反应温度、重汽油硫醇含量、RON损失相应分别降低了4,4 ℃;3,2 μg/g;0.3,0.4个单位;在一段、二段加氢脱硫单元处理量为175 t/h条件下,一段、二段加氢脱硫单元的循环氢纯度均提高了2个百分点以上,氢耗降低了300 m3/h以上,如此便有效保证二段加氢脱硫单元重汽油产品中硫含量不大于10 μg/g的指标要求。  相似文献   

7.
利用超临界流体萃取分离技术对齐鲁渣油加氢装置的原料减压渣油(原料减渣)和加氢后减压渣油(加氢减渣)进行了分离,考察了相同分离条件下原料减渣和加氢减渣的萃取情况,对超临界流体萃取的窄馏分性质的变化规律及残渣性质进行了分析。结果表明:采用超临界流体萃取技术能够有效地分离加氢减渣;与原料减渣相比,超临界流体萃取技术对加氢减渣具有更好脱金属、脱硫和降残炭能力。可以利用溶剂脱沥青工艺对加氢减渣进行进一步分离,从而得到后续装置更易加工的脱沥青油。  相似文献   

8.
中国石化抚顺石油化工研究院开发的煤焦油高压加氢处理与加氢裂化两段加氢组合工艺生产清洁燃料油技术在某炼油厂160 kt/a煤焦油加氢装置的工业应用结果表明,以煤焦油预处理后的小于500 ℃馏分油为原料,在反应压力为15.0 MPa、氢油体积比为1 000、加氢处理反应温度为(基准+10)℃、体积空速为(基准+0.2)h-1、加氢裂化反应温度为(基准+30) ℃、体积空速为(基准+0.2)h-1的条件下,小于160 ℃馏分硫质量分数为3.3 μg/g,辛烷值(RON)为65.3,可作为低硫石脑油;160~375 ℃柴油馏分的密度为0.852 5 g/cm3,十六烷值为49.5,凝点为-10 ℃,是优质的柴油调合组分;大于375 ℃加氢裂化尾油硫质量分数为2.6 μg/g,芳烃质量分数为2.0%,是很好的润滑油基础油原料。  相似文献   

9.
对煤焦油重质馏分油进行预加氢处理,利用红外光谱、核磁共振和元素分析等方法,从分子结构角度深入探讨煤焦油重质馏分油的理化性质和供氢性能的变化规律。结果表明,通过预加氢处理,煤焦油重质馏分油的芳碳率(fa)由加氢前的0.89下降到加氢后的0.80,芳环取代度(σ)由加氢前的0.12提高到0.20,供氢指数(PDQI)由3.21 mg/g提高到4.02 mg/g;预处理后的煤焦油重质馏分油在煤油共炼中的氢耗由4.03%下降到3.74%,转化率和油产率均得到提高,产物油中的沥青质含量明显下降,油品质量有明显改善。  相似文献   

10.
渣油悬浮床加氢裂化技术的研究   总被引:6,自引:3,他引:3  
张忠清  董志学 《石油化工》2002,31(4):271-273
介绍了抚顺石油化工研究院开发的渣油悬浮床加氢裂化工艺及催化剂 ,采用该催化剂加氢处理常、减压渣油 ,馏分油 (<5 3 8℃ ) ,单程收率达到 70 %以上。并在 2 0 0ml小型装置上进行了 5 0 0h的连续运转。采用尾油循环和其它组合工艺 ,可以得到较高的重渣油加氢转化率。  相似文献   

11.
对催化裂化回炼油三段窄馏分的供氢能力进行测定,选取供氢能力最强的一段进行加氢处理,以加氢后的催化裂化回炼油窄馏分为焦化供氢剂,通过中试试验考察其供氢效果。结果表明:三段窄馏分中,小于400 ℃馏分供氢能力最强;加氢处理能够进一步提高其供氢能力,以加氢后回炼油小于400 ℃馏分作为供氢剂能够使液体收率提高1.32百分点,焦炭收率降低2.45百分点。  相似文献   

12.
对四川油砂油进行了模拟蒸馏分析,获得了馏程分布。对油砂油的直馏柴油(200~350℃)、减压馏分油(350~500℃)和减压渣油(大于500℃)进行了物理性质测定。结果表明,以沸腾床LC-Fining法加氢裂化与延迟焦化组合工艺为四川油砂油的加工方案,可以获得收率(达到76.62%)较高、质量较好的轻质燃料油,同时柴汽比(质量比)为4.10。  相似文献   

13.
常杰  椿范立  藤元薰 《石油化工》2002,31(11):871-874
采用间歇式高压釜反应器研究了加拿大油砂沥青和沙特重质减压渣油及其模型化合物十二烷基苯的加氢裂化反应,实验条件为5 0MPa、410~430℃、0~60min。以微小电热丝在反应器中很小的区域制造了局部高温,考察了其对加氢裂化的影响。结果表明,该方法促进了反应物中自由基的形成,提高了重质油及其模型化合物的转化率和中间馏分油的收率。  相似文献   

14.
对南疆原油350~520℃减压馏分进行综合分析,发现该原油减压馏分黏度指数较低(64~85),不适合生产高黏度指数润滑油,可考虑生产低凝点润滑油。该馏分平均分子中烷基侧链上的碳原子占总碳原子的百分数为59.30%,重金属镍+钒质量分数仅0.15μg/g,可直接作为重油催化裂化的原料。南疆原油520℃以上的渣油组分性质分析表明,该渣油属于第3类渣油,其密度在980.0 kg/m3以上,残炭值达24.80%,100℃运动黏度高达13 000 mm2/s,硫质量分数达1.98%,钒质量分数高达170.5μg/g。该渣油作为焦化原料硫含量较高,将对焦化产品的质量产生影响,可采用溶剂脱沥青工艺生产一定量的沥青。如果作为重油催化裂化原料的掺料,必须考虑调配比例,控制硫和金属钒含量,以防催化剂中毒。  相似文献   

15.
某石化公司通过增大急冷减压渣油循环量和增加减压渣油循环的工艺技改及其优化实践,实现了300万t/a常减压蒸馏装置在加工负荷降低至设计额50%以下的连续生产。结果表明:在减压渣油循环技改及优化实施之后,该装置不仅实现了在50%低加工负荷下的安稳连续生产,而且当减压渣油循环比为35.05%时,其在减压塔的停留时间为12.55 min,满足了不大于原工艺设计的最大停留时间极限(12.8 min)许可要求;当减压渣油循环比从0提高到31.50%~50.00%时,减压渣油的收率下降了0.43~1.07个百分点,其减压渣油的500 ℃馏分体积分数下降了1.00~1.25个百分点,减三线油及减四线油的运动黏度(100 ℃)增幅分别为2.52%,3.76%,从而提高了该装置在极低加工负荷下的原料利用率。  相似文献   

16.
加拿大油砂沥青减压渣油的梯级分离实验结果表明,在获得较大脱沥青油收率的前提下可使重脱沥青油(重脱油)的黏度降低近70%。重脱油在反应温度410℃、反应时间25 min条件下进行减黏处理,100℃动力黏度从4 187 mPa·s降低到1 366 mPa·s,黏度降低67%以上,减黏油的安定性为1级。将直馏煤、柴油、VGO(减压蜡油)及减黏油与少量的稀释剂进行调合,8℃(冬季)和15℃(夏季)时仅需分别加入14%和6%的稀释剂,调合油即可满足加拿大原油管输要求,稀释剂用量减少50%以上。  相似文献   

17.
采用热溶剂过滤法与抽提回流法(SH/T 0509—2010),分别以正庚烷和甲苯为萃取剂,对5种重油的甲苯和正庚烷不溶物的元素组成质量分数及形貌进行了分析与表征,并且对比了重油沥青质质量分数的测定数据。结果表明:在萃取剂/原料油(体积/质量比)为30∶1(以甲苯为萃取剂)或100∶1(以正庚烷为萃取剂),滤膜孔径为0.45 μm,萃取温度为80 ℃的最佳条件下,热溶剂过滤法与抽提回流法所得沥青质质量分数相当。热溶剂过滤法具有分析速度快、适用性强、准确度高的特点,实现了甲苯和正庚烷不溶物质量分数同步测定的目标。  相似文献   

18.
重油分级催化裂化反应性能   总被引:1,自引:0,他引:1  
 利用小型固定流化床实验装置,对重油中不同馏程范围馏分裂化性能进行研究,发现重油中存在反应性能差异明显的两类馏分,且在减压渣油中仍含有部分优质馏分,依此采用分级方法将重油分为优质、劣质裂化原料。实验对比了各分级点分级后重油的催化裂化产物分布,也对比了重油分级前后催化裂化反应产物分布的变化。结果表明,适当提高分级点温度,将减压渣油中的一部分馏分切入优质原料,通过分别裂化可以改善重油整体的产物分布,并确定了长庆、济南重油适宜的分级点分别在500~540℃和500~520℃范围。分级后针对不同性质原料匹配各自的反应区间,重油整体的轻质油收率提高,焦炭和干气的收率降低;且随着催化裂化原料掺炼渣油比例的增加,采用重油分级催化裂化提高目的产物的优势越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号