首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以减压渣油为原料,催化裂化加氢重循环油和工业馏分油窄馏分为供氢溶剂,采用溶剂脱沥青-液相加氢组合工艺,可将减压渣油高效转化为轻质油。结果表明:焦化蜡油(410~430 ℃)、FCC油浆(450~470 ℃)、糠醛抽出油(430~450 ℃)、重循环油(410~430 ℃)窄馏分的供氢能力依次为2.28,2.61,4.86,2.73 mg/g,远低于四氢萘(7.90 mg/g),而加氢重循环油(0.948 7 g/cm3)供氢能力(7.42 mg/g)与后者相近;采用组合工艺,以加氢重循环油为供氢溶剂,减压渣油的综合转化率为90.84%,轻质油收率(质量分数)可达89.35%,焦炭得到有效抑制。  相似文献   

2.
中国石化抚顺石油化工研究院开发的煤焦油高压加氢处理与加氢裂化两段加氢组合工艺生产清洁燃料油技术在某炼油厂160 kt/a煤焦油加氢装置的工业应用结果表明,以煤焦油预处理后的小于500 ℃馏分油为原料,在反应压力为15.0 MPa、氢油体积比为1 000、加氢处理反应温度为(基准+10)℃、体积空速为(基准+0.2)h-1、加氢裂化反应温度为(基准+30) ℃、体积空速为(基准+0.2)h-1的条件下,小于160 ℃馏分硫质量分数为3.3 μg/g,辛烷值(RON)为65.3,可作为低硫石脑油;160~375 ℃柴油馏分的密度为0.852 5 g/cm3,十六烷值为49.5,凝点为-10 ℃,是优质的柴油调合组分;大于375 ℃加氢裂化尾油硫质量分数为2.6 μg/g,芳烃质量分数为2.0%,是很好的润滑油基础油原料。  相似文献   

3.
采用百万吨级神华煤直接液化示范装置加氢稳定单元进料为加氢原料,在处理量300 mL加氢实验装置上考察了反应温度对煤直接液化循环溶剂性质的影响,并采用0.5 L搅拌式高压釜研究了煤在不同加氢深度循环溶剂中的液化效果。结果表明,随着溶剂加氢反应温度的升高,循环溶剂的硫、氮含量逐渐降低,氢/碳原子比增加;加氢反应温度由340℃升至380℃时,循环溶剂的芳碳率(fa)不断减小,供氢指数(PDQI)逐渐增大,供氢能力增强。采用380℃加氢反应的循环溶剂进行煤液化时,煤的转化率和油收率均达到最大值,分别为88.64%和57.63%。当溶剂加氢反应温度达到390℃时,循环溶剂的供氢指数出现降低,芳碳率增加,供氢能力减弱,煤在此溶剂中加氢液化的转化率和油收率均有所降低,分别为88.22%和55.17%。  相似文献   

4.
 在小型微反装置上,对棉籽油催化裂化生成油进行加氢精制研究。结果表明,汽油馏分在反应温度190 ℃、氢分压1.6 MPa、体积空速4.0 h-1、氢油体积比300的缓和条件下进行加氢精制,精制汽油烯烃含量满足国Ⅳ标准,研究法辛烷值(RON)保持在88。柴油馏分在反应温度280 ℃、氢分压4.0 MPa,体积空速2.0 h-1、氢油体积比420的条件下进行加氢精制,柴油碘值由11.9 g/(100g)降到4.6 g/(100g),氧化安定性(总不溶物)由3.4 mg/(100mL)降到2.1 mg/(100mL),柴油的十六烷值由25.8增加到30,加氢柴油安定性满足柴油GB/T 19147-2003标准。在0号柴油中掺入30%棉籽油加氢催化柴油后依然符合0号柴油标准。  相似文献   

5.
通过对重质润滑油馏分进行深加工,获得了锂料等调油组分,内燃机油组分,精制型汽缸油,19#普通压缩机油及橡胶填充油等。生产工序采用加氢脱酸→糠醛精制→加氢处理(精制)或白土精制。橡胶填充油方案生产工序复杂,成本高;得到的橡胶填充油颜色浅、碳型结构好、凝点低。减三线馏分油粘度指数很低,加氢处理后其粘度指数达40~50,可用于调制CA级柴油机油。由减四线馏分油生产的精制型汽缸油料,具有酸值低、颜色浅及安定性好的特点。由减四线馏分油生产的19#压缩机油只能调制普通压缩机油。轻脱油经深度糠醛精制及加氢处理后,可调制高档次内燃机油。  相似文献   

6.
加拿大油砂沥青常压渣油供氢热裂化改质基础研究   总被引:1,自引:0,他引:1  
以加拿大油砂沥青常压渣油(常压渣油)馏分油FA,FB,FC为初选供氢剂,对其氢转移能力进行了评价,优选出合适的供氢剂;在此基础上研究了不同反应条件下优选供氢剂FB对常压渣油热裂化改质效果的影响。结果表明:3种馏分油的相对供氢能力由大到小的顺序为FB>FC>FA;相比于常规热裂化反应,供氢热裂化反应过程中的生焦诱导期延长3.0~4.5 min,改质油的斑点实验等级降低了1~2级(420 ℃,20~40 min),随着反应时间的延长和反应温度的升高,改质油的密度下降的趋势更为明显;此外供氢热裂化改质油总降黏率是掺稀降黏率的1.14~1.40倍。  相似文献   

7.
采用加氢处理组合工艺分别处理中低温和高温煤焦油,并在实验室小试装置上进行了试验研究,试验结果表明:中低温煤焦油采用沸腾床加氢预处理-固定床加氢裂化组合工艺处理后,杂质含量大幅降低,重组分馏程明显前移,经加氢预处理后可以实现全馏分煤焦油进固定床加氢处理要求,无尾油外甩;高温煤焦油经加氢预处理后,重组分得到一定程度轻质化,超过50%以上的重组分(>500℃)得到转化,外甩尾油量大幅下降,资源利用率明显提高;试验还发现煤焦油杂质脱除率与煤焦油的结构组成及馏分分布有很大关系。  相似文献   

8.
 采用煤焦油馏分油中的洗油与脱晶蒽油以质量比1:1混合的油为原料,在处理量500kg/h的加氢稳定中试装置上进行洗油与脱晶蒽油混合油的加氢稳定实验。利用常温常压旋转黏度仪测定混合油加氢所得溶剂的黏度,考察其成浆性能;采用0.5L搅拌式高压釜考察了混合油不同次数加氢所得溶剂的煤直接液化反应效果。结果表明,洗油与脱晶蒽油的混合油经过加氢处理后,表观黏度降低,用来配制油煤浆表现出良好的成浆性能;用作煤直接液化溶剂具有较强的供氢性能,以经过3次加氢后所得溶剂作为煤液化溶剂,可得到89.47%煤液化转化率,63.06%油收率。洗油和脱晶蒽油混合油加氢后所得溶剂是一种效果良好的煤直接液化开工用起始溶剂。  相似文献   

9.
在微型固定床加氢反应装置上,以复合分子筛NiW/HUSY-γ-Al2O3(HUSY质量分数15%)为催化剂,对抚顺页岩油进行加氢处理,考察了工艺条件对加氢处理效果的影响.结果表明,最佳工艺条件为:反应温度400℃,反应压力9.0 MPa,氢油比(体积比)600∶1,液时空速0.5h-1;在此工艺条件下,加氢处理生成油的含硫量由5 571.2 μg/g降至201.1 μg/g,含氮量由12 157.6 μg/g降至1 203.6 μg/g,产品液体收率达到91.2%;与页岩油原料相比,汽油、柴油馏分收率分别提高了7.5,20.4个百分点.  相似文献   

10.
采用不同工艺加工环烷基蜡油生产橡胶填充油(简称橡胶油),对多种工艺进行了研究和分析,结果表明:一段高压加氢工艺可直接生产芳碳率(CA)为12%左右的环保橡胶油;全氢型流程(加氢处理-临氢降凝-加氢补充精制)对原料适应能力强,可生产洁净的低芳橡胶油;加氢脱酸与糠醛精制组合工艺可生产CA为12%左右的环保橡胶油;高压加氢处理与糠醛精制组合工艺可生产CA为21%~27%的环保橡胶油,并可根据产品需求灵活调整生产方案,该工艺与全氢型工艺耦合时,产品种类更丰富,生产调整更灵活。以上经验可为润滑油型炼油厂在升级改造和新建装置时提供参考。  相似文献   

11.
以中低温煤焦油为原料,先进行高压釜模拟悬浮床加氢预处理,再进行固定床加氢处理,对所得液体产物进行分析。结果表明:中低温煤焦油经悬浮床加氢预处理后,轻质化程度显著提高,再经固定床加氢处理后,所得汽油馏分中C_6~C_9芳烃质量分数达到32.72%,芳烃潜含量为66.15%,适于生产芳烃或用作高辛烷值汽油调和组分;柴油馏分中总芳烃、单环芳烃和双环芳烃质量分数分别为90.9%,46.9%,36.9%,适于进一步加氢改质最大化生产化工原料。  相似文献   

12.
在选定的条件下,对煤焦油沥青进行了延迟焦化工艺试验,结果表明:以煤沥青直接作为焦化进料时,可以获得质量分数为10%~20%的液体产品;以煤沥青混兑蒽油为延迟焦化进料时,其液体收率大幅提高,达到28.89%,同时改善了加热炉进料性质,从而可延长装置的运行周期。由于以煤沥青作为焦化的进料,其所产的焦炭符合石油焦1B的标准,可在炼铝工业中使用,从而提高了煤沥青的附加值,增加了煤焦油加工企业的经济效益。针对煤沥青焦化液体产品性质差的特点,应采用较高氢分压、较高反应温度和较低空速对其进行加氢处理。  相似文献   

13.
The gasification process is being developed to obtain environmentally clean and efficient syngas from solid (coal, biomass, and municipal solid waste) or liquid (heavy oil and waste lubricant oil) fuels for power generation. An Aspen Plus model of crude oil gasification in presence of steam as a gasifying agent that can predict syngas yield, tar concentration, and performance parameters was developed. Effects of some critical parameters such as gasification temperature, steam-fuel-ratio on hydrogen yield, tar content, and char conversion of three different crude oils were explored. Results showed that the hydrogen yield increases by increasing steam/fuel ratio from 0.5 to 0.7 (wt/wt), and then reduces smoothly due to the endothermic behavior of methane reforming reaction, which releases three hydrogen moles. It also found that as the temperature increases within the range, hydrogen yield increases dramatically, which can be explained according to the Le Chatelier's principle on the endothermic reforming reactions of methane and tar cracking. Modeling results validated against the experimental measurements and found to be in a good agreement.  相似文献   

14.
采用沸腾床渣油加氢处理工艺对掺炼一定比例煤焦油的劣质渣油进行加氢处理研究,考察其产品分布情况;并采用斑点试验、不稳定性参数试验对混合原料的相容性及加氢处理后体系的稳定性进行考察。试验结果表明:劣质渣油与煤焦油按7:3比例混合进行加氢处理,小于500 ℃馏分油收率增加24.33百分点,焦炭产率降低;相容性方面,混合原料的相容性要差于纯减渣原料,但经加氢处理后,混合原料稳定性得到大幅改善,而减渣原料稳定性降低。  相似文献   

15.
在3×400 mL固定床加氢中试装置上评价了重油固定床加氢催化剂(包括重油加氢保护剂、重油加氢精制催化剂和芳烃饱和催化剂)用于中/低温煤焦油加氢改质的效果。中试条件为:原料体积空速0.8 h-1(按加氢精制催化剂计算),反应压力12.0 MPa和13.5 MPa,氢油比1 200∶1,保护剂床层平均反应温度270℃,精制催化剂床层平均反应温度350℃,芳烃饱和催化剂床层平均反应温度360℃,在2个操作压力下各运转120 h。结果表明:提高煤焦油加氢改质反应压力,有利于杂原子的脱除。煤焦油经过加氢改质后,残炭、杂原子、芳烃含量大大降低,各馏分产品性质明显改善。产物中石脑油馏分含量增加,芳烃潜含量高,可作为优质的催化重整原料;柴油馏分含量基本不变,硫、氮含量低,凝点低,可作为优质的柴油调合组分;蜡油馏分含量明显降低,残炭和金属含量少,可作为优质的催化裂化原料。上述结果表明将重油固定床加氢催化剂用于煤焦油加氢改质在技术上是可行的。  相似文献   

16.
以研究煤焦油改质工艺开发与应用为目标,选择由甲苯和正庚烷组成的二元混合溶剂对原料焦油进行改质处理,得到净焦油与煤沥青。结果表明,在甲苯/正庚烷质量比为0.5:1、剂油质量比为1.5:1、温度为70 ℃的条件下,对原料焦油进行萃取精制,焦油中灰分含量由1.89%降至0.03%,甲苯不溶物 (TI) 含量由9.56%降至0.31%,正庚烷不溶物(HI)含量由15.26%降至4.09%,残炭由4.07%降至0.39%,净焦油收率为83.2%。所得净焦油可尝试作为煤焦油全馏分加氢原料。同时,将副产物煤沥青与抚顺页岩油沥青按照不同质量比进行了掺混,试验发现,当煤沥青掺入量(w)为10%时,所得调合沥青的性能均达到重交通道路石油沥青AH-90标准,可用作重交通道路沥青。  相似文献   

17.
考察了石家庄炼油厂所产催化裂化油浆与兖州煤加氢共处理中油浆加入量和反应条件对煤转化及产物分布的影响,通过与油浆和煤单独加氢处理的结果比较,阐述了油浆与煤的相互作用原理,煤-油浆共处理可显著提高煤的转化率,同时可使轻质产物的产率显著提高,当油浆加入量为66.6%时,油浆对煤转化的协同促进作用最大,轻质产物的产率比煤和油浆单独处理的结果高1倍。  相似文献   

18.
采用150 kg/d悬浮床加氢裂化中试装置,以全馏分高温煤焦油为原料,考察了反应温度、反应质量空速及反应压力对煤焦油加氢裂化反应性能及产物分布的影响。结果表明:升高反应温度和降低反应质量空速,均可以促进煤焦油中重油和沥青质的深度转化,气体和焦炭收率增加,重油收率降低,但过高的反应温度会降低轻油馏分收率;提高反应压力可以抑制气体和焦炭的生成,促进沥青质的加氢转化,保证了较高的轻油收率。在反应温度为465 ℃,反应压力为22 MPa,反应质量空速为0.5 h-1,氢气/原料油(体积质量比, L/kg)为1 500 的最佳条件下,重油和沥青质的转化率分别达到26.05%和62.95%,轻油收率为77.42%,气体和焦炭收率为17.28%。  相似文献   

19.
Synthetic fuels are expected to become a major source of energy supply in the future and major sources of synthetic fuels will be coal, shale oil and tar sand.

This paper presents an investigation of hydrotreating using a batch process for bitumen from Nigerian oil sand. The chatacteriistics in conversion of asphaltencs were studied. Various ananlyses were performed to obtain the properties of the bittemen before and after conversion to synthetic crude, e.g., changes of heteroatoms such as sulphur decreases of asphaltics, viscosity add specific gravity, and increases of distillate yield.

The process liquid fuel streams that are highly aromatic. The data suggest that the use of hydrogen causes stabilization of reactive intermediates rather than saturation of thermal products.  相似文献   

20.
高温煤焦油加氢制取汽油和柴油   总被引:17,自引:4,他引:13  
以山西某焦化厂高温煤焦油为原料,采用加氢保护剂、加氢脱金属催化剂、加氢精制催化剂、缓和加氢裂化催化剂组成的级配方式在小型加氢评价装置上进行加氢工艺研究,并在系统压力12.0M Pa条件下考察了反应温度、氢与油体积比、液态空速对高温煤焦油加氢的影响。实验结果表明,在系统压力12.0M Pa、温度380℃、氢与油体积比1 800∶1、液态空速0.28h-1的条件下对高温煤焦油进行加氢改质,可以实现煤焦油的轻质化,汽油馏分(初馏点~200℃)、柴油馏分(200~360℃)、加氢尾油(高于360℃)分别占产物质量的17.69%,62.04%,20.27%。加氢尾油可作为优质的催化裂化或加氢裂化掺炼原料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号