首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
顺式-4-羟基-L-脯氨酸是一种可用于合成多种药物和香料的手性结构物质。通过对L-脯氨酸顺式-4-羟化酶基因的优化设计,并引入色氨酸串联启动子,构建出1株能表达L-脯氨酸顺式-4-羟化酶的重组大肠杆菌JM109/p EHC4,从而可以将游离的L-脯氨酸转化为顺式-4-羟基-L-脯氨酸。对该菌株进行摇瓶发酵优化,得出优选培养基为(g/L):葡萄糖10,甘油10,蛋白胨10,NaCl 6,FeSO_4·7H_2O 0.278,L-抗坏血酸0.528,(NH_4)_2SO_45,K_2HPO41,MgSO_40.2,CaCl_20.015,L-脯氨酸4。在该条件下发酵12 h,顺式-4-羟基-L-脯氨酸的产量达到657.08mg/L,比优化前提高了3.76倍;在24 h时产量达到1 582.75 mg/L。研究结果为顺式-4-羟基-L-脯氨酸的微生物转化法生产提供了基础。  相似文献   

2.
反式-4-羟基-L-脯氨酸是在自然界中分布最广泛的一种羟脯氨酸,在医药、化工、食品和美容业等领域有广泛应用。为了在生物转化法生产反式-4-羟基-L-脯氨酸的过程中减少菌体对底物脯氨酸的降解,利用Red/ET同源重组系统敲除putA基因,并比较野生型菌株与缺失型菌株在不同培养基中的反式-4-羟基-L-脯氨酸产量,再引入vgb基因,考察该基因对反式-4-羟基-L-脯氨酸产量的影响。结果表明:putA基因的缺失能阻止菌体降解脯氨酸;碳源充足的情况下,GC培养基更有利于反式-4-羟基-L-脯氨酸的生产;putA基因缺失型菌株能将被消耗的脯氨酸全部转化为反式-4-羟基-L-脯氨酸;vgb基因的存在能显著提高反式-4-羟基-L-脯氨酸的产量。  相似文献   

3.
为了获得高产反式-4-羟脯氨酸的菌株,基于大肠杆菌的代谢网络模型的指导,以大肠杆菌E.coli BL21(DE3)Δput A为出发菌株,通过基因敲除技术成功敲除arg B基因,阻断L-脯氨酸合成的前体物L-谷氨酸的分支代谢途径,增加L-脯氨酸合成的代谢流,构建了精氨酸缺陷型菌株E.coli BL21(DE3)Δput AΔarg B。同时转入表达质粒p UC19-pro B2A-Ptrp2-hyp,该质粒含有突变基因pro B2,该突变基因所编码的谷氨酸激酶受L-脯氨酸的反馈抑制作用显著降低。摇瓶发酵结果表明,在外源添加600 mg/L L-精氨酸时,该重组菌株产反式-4-羟脯氨酸的量达到312.67 mg/L,较菌株E.coli BL21(DE3)Δput A/p UC19-pro B2A-Ptrp2-hyp提高了25.29%。  相似文献   

4.
优化4-羟基异亮氨酸发酵过程中溶氧水平及FeSO_4添加量,以提高其发酵水平。结合菌株Corynebacterium glutamicum HIL18及4-羟基异亮氨酸合成特点,首先考察不同溶氧水平及两阶段溶氧控制对4-羟基异亮氨酸发酵的影响。然后考察FeSO_4添加对其发酵的作用。20%溶氧有利于4-羟基异亮氨酸的合成。利用两阶段溶氧控制工艺(0~20 h、20%溶氧;20~64 h、30%溶氧)经64 h发酵,4-羟基异亮氨酸产量达到38.7 g/L,较未使用该工艺提高11.2%。采用两阶段FeSO_4添加策略(初始浓度为65μmol/L、20 h添加30μmol/L),4-羟基异亮氨酸的产量达到43.4 g/L。采用优化后的工艺使得4-羟基异亮氨酸产量较优化前提高27.3%。获得了4-羟基异亮氨酸发酵过程中两阶段溶氧控制及FeSO_4添加工艺。该结果为4-羟基异亮氨酸的高效发酵合成提供参考。  相似文献   

5.
为实现无外源脯氨酸的条件下直接从葡萄糖转化生成反式-4-羟脯氨酸,本实验采用定点突变和基因共表达的方法构建重组大肠杆菌:首先对L-脯氨酸生物合成途径中的关键酶谷氨酸激酶进行定点突变E143A、K145A,以增强L-脯氨酸生物合成能力;然后引入脯氨酸4-羟化酶基因,通过两个基因的共表达可以实现从葡萄糖到反式-4-羟脯氨酸的连续转化,而不再需要添加外源L-脯氨酸。得到的L-脯氨酸生物合成能力增强的菌株在摇瓶阶段L-脯氨酸的产量可达到1.4 g/L;pro BA2与hyp双基因共表达菌株的反式-4-羟脯氨酸产量为98.9 mg/L,比原始菌株提高了一倍,经发酵优化后得到培养基为:葡萄糖10 g/L,胰蛋白胨15 g/L,硫酸亚铁3 mmol/L,硫酸镁1 g/L,磷酸氢二钾3 g/L,氯化钙0.015 g/L,在这个培养条件下反式-4-羟脯氨酸的产量为220.0 mg/L,比优化前提高1.2倍。  相似文献   

6.
以低品级甘油为碳源进行微生物发酵合成反式-4-羟脯氨酸(Trans-4-hydroxy proline,Hyp)的探索。从实验室构建的重组菌E.coli BL21(DE3)/p UC19-ptrp2-Hyp出发,通过易错PCR随机突变和常压室温等离子体复合诱变处理,利用单菌落琼脂块和氨基酸显色相结合高通量筛选出1株以甘油为唯一碳源的Hyp高产菌P71。与葡萄糖培养基相比,该菌株更适合在甘油上生长并转化L-脯氨酸合成Hyp,发酵20 h产Hyp高达1.20g/L,比生长在葡萄糖培养基上高70%以上;比其出发菌株在葡萄糖培养基上产量提高了1倍以上。通过培养基成分系统优化,发现胰蛋白胨、Fe SO4和L-脯氨酸是3大主要影响因素,最适加量分别为7.01 g/L、11.51 g/L和1.41 mmol/L;在该条件下突变菌株摇瓶发酵12 h产Hyp达1.61 g/L,比优化前提高了50%。  相似文献   

7.
在埃切假丝酵母(Candida etchellsii)发酵过程中,通过盐度调控和氨基酸添加,强化目标产物HEMF(2(5)-乙基-4-羟基-5(2)-甲基-3(2H)-呋喃酮)的合成效率。分阶段调控发酵体系的盐度(初始阶段控制CaCl浓度为200 g/L,发酵40 h后提升至220 g/L),结合氨基酸添加(向发酵体系中添加丙氨酸、精氨酸和甘氨酸各1.67 g/L)。摇瓶结果表明:酵母C.etchellsii合成HEMF,其产量为110.74 mg/L。7 L发酵罐上罐验证,HEMF产量达到121.51 mg/L,相比空白(200 g/L CaCl浓度下且没有添加氨基酸)提高了21.2倍。分阶段盐度调控结合氨基酸添加策略显著强化了C.etchellsii对HEMF的合成。  相似文献   

8.
顺式-3-羟基-L-脯氨酸(顺式-3-羟脯氨酸)可用于合成多种抗癌药物,具有重要的商业价值,目前大多通过添加IPTG来诱导表达脯氨酸-3-羟化酶,采用两步法生物合成顺式-3-羟脯氨酸。作者通过目的基因优化设计,引入强启动子色氨酸串联启动子(Ptrp2)来避免异源表达时的诱导剂使用,构建重组质粒p ES-Ptrp2-P3H,成功构建了重组大肠杆菌BL21(DE3)/p ET21a-Ptrp2-P3H,优化后的脯氨酸-3-羟化酶基因(P3H)改变了168个碱基,GC含量由原来的64.83%降低到49.31%。该菌在初步优化培养基(葡萄糖1 g/d L,甘油0.125 g/d L,胰蛋白胨1.6 g/d L,(NH_4)_2SO_40.5 g/d L,K_2HPO_40.1 g/d L,NaCl 0.2 g/d L,FeSO_41 mmol/L,MgSO_40.5 g/d L,CaCl_20.015 g/d L,脯氨酸10 g/L,pH 7.5)上能一步法原位合成顺式-3-羟脯氨酸,摇瓶发酵24 h,产量0.8 g/L,比优化前提高一倍以上,为进一步开展顺-3-羟脯氨酸产业化提供了依据。  相似文献   

9.
对缺陷短波单胞菌(Brevndimonas diminut)JNPP-NSS产L-脯氨酸的补料分批发酵条件进行了研究。结果表明,发酵初始添加50 g/L前体物质谷氨酸,以最适初始葡萄糖浓度100 g/L,于35 h以3.0 g/(L.h)的流速补加葡萄糖,使总糖浓度达120 g/L的补碳方式,L-脯氨酸的合成浓度有所提高。发酵结束,L-脯氨酸的终浓度提高到54.40 g/L,底物葡萄糖对L-脯氨酸的转化率达到0.45 g/g。  相似文献   

10.
为考察组成型过表达异亮氨酸羟化酶(isoleucine dioxygenase,IDO)基因ido对4-羟基异亮氨酸合成的影响,构建ido组成型表达质粒pXM01-ido及菌株HIL017,其ido转录量及IDO活性较诱导型过表达菌株HIL016显著提升,4-羟基异亮氨酸产量较HIL016提高19.4%。为进一步提高4-羟基异亮氨酸产量,通过Plackett-Burman试验确定HIL017发酵培养基中玉米浆、谷氨酸和FeSO4·7H2O用量为主要影响因素,利用最陡爬坡试验和响应面法确定其最优用量为玉米浆34.1 mL/L、谷氨酸2.98 g/L、FeSO4·7H2O 0.016 7 g/L,此时4-羟基异亮氨酸理论产量为5.57 g/L。验证实验结果表明,最佳条件下4-羟基异亮氨酸产量为5.53 g/L,较优化前提高19.7%。  相似文献   

11.
An Escherichia coli recombinant strain producing trans-4-hydroxy-L-proline (Hyp) was constructed by introducing a proline 4-hydroxylase gene into an L-proline-producing E. coli. Plasmid pPF1, which contains a gene encoding feedback resistant gamma-glutamyl kinase (proB74), was constructed and introduced into E. coli W1485 putA. The recombinant E. coli W1485 putA/pPF1 strain produced L-proline (1.2 g/l). The proline production by W1485 putA/pPF1 was converted to Hyp production by introducing pWFH1 which contains a proline 4-hydroxylase gene. E. coli W1485 putA which harbors pWFP1 carrying the proline 4-hydroxylase gene, proB74, and proA produced 25 g/l of Hyp in 96 h. A novel biosynthetic pathway of Hyp, which has not previously been produced in E. coli, was constructed in E. coli.  相似文献   

12.
本研究以Clostridium beijerinckii NCIMB 8052为出发菌株,利用紫外诱变和高丁醇环境驯化相结合的方法复合选育,最终获得一株耐丁醇的高产突变株,命名为Clostridium beijerinckii ZL01.与出发菌株8052相比,ZL01对丁醇初始浓度的耐受能力从10g/L提高到11g/L.5L发酵罐的分批发酵结果表明,丁醇的产量从10.34g/L增加为15.01g/L,提高45.16%;总溶剂从12.87g/L增加为19.55g/L,提高49.01%;发酵周期缩短4h,发酵强度从0.27g/(L·h)提高为0.44g/(L·h),遗传稳定性实验表明,该菌株连续传代20次,溶剂产量稳定,菌株无明显退化.  相似文献   

13.
从辣白菜样品中筛选出1 株高产乳酸的菌株LB-103,经L-/D-乳酸试剂盒检测该菌株发酵产L-乳酸的光学纯度为100%。通过形态学观察、VITEK 2生理生化鉴定和16S rDNA序列分析,确定该菌株为鼠李糖乳酸杆菌(Lactobacillus rhamnosus),将其命名为鼠李糖乳酸杆菌DLF-15038。对其发酵培养基进行初步优化,发现廉价的棉籽饼粉可以部分替代酵母粉,采用15?g/L棉籽饼粉和10?g/L的酵母粉为复合氮源,L-乳酸的产量得以维持且明显降低成本,最适无机盐质量浓度分别为CH3COONa?3?g/L、KH2PO4?2?g/L、MnSO4?0.3?g/L、MgSO4?0.2?g/L。在该优化条件下,进行了5?L发酵罐中的批式流加发酵实验,发酵72?h,L-乳酸产量为165.15?g/L,生产强度为2.29?g/(L·h),糖酸转化率为93.34%。  相似文献   

14.
刘鹏  王泽南  李莹  张秋子  吴红引 《食品科学》2011,32(11):216-221
利用微波-硫酸二乙酯复合诱变对产赤藓糖醇丛梗孢酵母E54进行处理,以高渗平板和摇瓶发酵为筛选方法,得到遗传稳定的诱变高产株EW29;再采用氮离子注入对EW29进行诱变处理,摇瓶发酵筛选得到诱变株EN59,其90h发酵液中赤藓糖醇产量达到55.13g/L,较EW29提高20.3%,较E54提高36.9%,遗传稳定性较好。对突变株EN59的发酵培养基进行了优化,在优化培养基葡萄糖250g/L、酵母膏5g/L、KH2PO4 0.3g/L、MnSO4 ·4H2O 0.04g/L、CuSO4 ·5H2O 0.03g/L,初始pH4的条件下,90h发酵液中赤藓糖醇平均产量达到69.00g/L以上。在优化培养基的基础上进行5L罐发酵放大实验,发酵126h赤藓糖醇产量达到71.14g/L。  相似文献   

15.
9α-羟基雄烯二酮(9α-OH-AD)作为一种不可替代的甾体药物中间体,是合成多种皮质类甾体激素类药物的重要原料。本研究通过在产雄甾-4-烯-3,17-二酮(AD)的菌株Mycobacterium sp.TFZ中表达3-甾酮-9α-羟基化酶(KSH)基因kshA和kshB,获得了一株可直接转化植物甾醇生产9α-OH-AD的工程菌株Mycobacterium sp.TFZ3215,然后以9α-OH-AD产量为评价指标,对油水两相转化体系中添加乳化剂吐温的种类和含量进行优化。研究结果表明:与出发菌株Mycobacterium sp.TFZ相比,工程菌Mycobacterium sp. TFZ3215发酵液中9α-OH-AD的含量由1.7%提高到94.7%,AD的含量由80.1%减少到3.4%。进一步通过在油水两相发酵体系中添加2 g/L的吐温-80后,9α-OH-AD的产量由1.69 g/L增加到7.53 g/L,提高了3.4倍。本研究成功构建了高产9α-OH-AD的工程菌株,并对油水两相发酵体系进行了优化,9α-OH-AD的产量达到7.53 g/L,具有极好的产业化前景。  相似文献   

16.
在大肠杆菌BL21 Star (DE3)中建立了2’-岩藻糖基乳糖(2’-fucosyllactose,2’-FL)的从头合成途径,通过CRISPR/Cas9系统敲除了β-半乳糖糖苷酶基因lacZ M15序列和尿苷二磷酸-葡萄糖脂质载体转移酶基因wcaJ,探究了操纵子、假操纵子和单顺反子3 种不同通路配置对重组大肠杆菌合成2’-FL的影响。结果表明:从头合成途径的基因在大肠杆菌BL21 Star (DE3)过表达后摇瓶发酵产生的2’-FL质量浓度为0.34 g/L。敲除lacZ M15和wcaJ后,重组菌产生的2’-FL质量浓度增加到了1.26 g/L。在操纵子形式下,重组菌BS-7摇瓶发酵产生的2’-FL质量浓度最高,达1.92 g/L。BS-7在10 L发酵罐中分批补料发酵37 h后产生的2’-FL质量浓度达到14.04 g/L,2’-FL产率为0.59 g/(L·h),乳糖转化率为63%。因此,大肠杆菌合成2’-FL过程中,较低的基因表达强度更有助于提高其产量,同时可提高底物的转化效率。  相似文献   

17.
从太岁中筛选得到一株初始产酶较高的琼脂糖酶产生菌,经形态和分子生物学分析方法鉴定之后,认定其属于类芽孢杆菌属(Paenibacillus),命名为Paenibacillus sp. P1(简称为P1)。P1为革兰氏阴性菌,短杆状细胞,对明胶和纤维素都没有水解活性。研究该菌的生长及产酶过程发现,该菌株最适发酵产酶时长是40 h。利用单因素实验对发酵培养基进行优化,最终确定了最适合菌株P1产琼脂糖酶的发酵培养基配方为:Agar 3 g/L、蛋白胨2 g/L、K_2HPO_4·3H_2O 1.0 g/L、NaCl 0.3 g/L、MgSO_4·7H_2O 0.05 g/L、FeSO_4·3H_2O 0.02 g/L、CaCl20.04g/L。菌株P1在优化后的培养基中发酵40 h,琼脂糖酶产量达到了3.47×10~4U/L,是优化前产酶水平的3.4倍。实验结果为非海洋来源的产琼脂糖酶菌株筛选和琼脂糖酶的放大发酵奠定了基础。  相似文献   

18.
以野生型大肠杆菌Escherichia coli W为出发菌株,利用Red同源重组系统分别敲除了乳酸脱氢酶基因(ldhA)、乙醇脱氢酶基因(adhE)、丙酮酸甲酸裂解酶基因(pflB)、丙酮酸氧化酶基因(poxB)和乙酸激酶基因(ackA),再通过无氧生长进化筛选过程,构建得到在厌氧条件下能有效生长,并以琥珀酸为主要发酵产物的重组大肠杆菌WS100(△ldhA,△adhE,△pflB,△poxB,△ackA)。利用15 L发酵罐进行厌氧发酵测定显示,经72 h发酵,菌体密度OD600最大值可提高至6.48,琥珀酸产量达到70.13 g/L,琥珀酸的生产强度为0.98 g/(L.h),葡萄糖-琥珀酸转化率为76%。发酵液中副产物含量低,乙酸含量为5.34 g/L,乳酸产量仅为0.15 g/L,未检测到甲酸和乙醇生成。结果表明,厌氧条件下,该工程菌可有效利用低营养成分的无机盐培养基,在不表达任何外源基因的条件下可稳定高产琥珀酸,具有极大的工业化开发前景。  相似文献   

19.
以辅酶Q10产生菌R-SL15为实验菌株,为提高其辅酶Q10产量,对其进行培养基优化,得到最优发酵培养基。采用Plackett-Burman实验设计和Box-Behnken响应面分析方法对R-SL15的培养基进行优化模型的建立,得出最优发酵培养基为:葡萄糖18.90g/L,酵母粉5.54g/L,(NH4)2SO40.98g/L,KH2PO40.95g/L,牛肉膏6g/L,MgSO4.7H2O0.75g/L,FeSO4.7H2O100mg/L,NaCl10g/L,蒸馏水1L。辅酶Q10产量为51.31mg/L,比优化前的25.74mg/L提高了99.34%。该回归模型高度显著(R2=0.9423),拟合性好,可用于预测。  相似文献   

20.
代书玲  陈国  宗琪 《中国酿造》2019,38(11):140
通过单因素和正交试验,对蜡样芽孢杆菌(Bacillus cereus)产磷脂酶D发酵条件进行了优化。结果表明,培养基最佳组成为卵黄10 g/L、蛋白胨15 g/L、牛肉粉2 g/L、MgSO4·7H2O 1 g/L、氯化钠3 g/L;最佳发酵条件为:培养基初始pH8.0,接种量1.0%,于36 ℃,200 r/min培养8 h。在最适发酵条件下磷脂酶D酶活达4.21 U/mL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号