首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Inadequate feed consumption reduces intestinal barrier function in both ruminants and monogastrics. Objectives were to characterize how progressive feed restriction (FR) affects inflammation, metabolism, and intestinal morphology, and to investigate if glucagon-like peptide 2 (GLP2) administration influences the aforementioned responses. Twenty-eight Holstein cows (157 ± 9 d in milk) were enrolled in 2 experimental periods. Period 1 [5 d of ad libitum (AL) feed intake] served as baseline for period 2 (5 d), during which cows received 1 of 6 treatments: (1) 100% of AL feed intake (AL100; n = 3), (2) 80% of AL feed intake (n = 5), (3) 60% of AL feed intake (n = 5), (4) 40% of AL feed intake (AL40; n = 5), (5) 40% of AL feed intake + GLP2 administration (AL40G; 75 µg/kg of BW s.c. 2×/d; n = 5), or (6) 20% of AL feed intake (n = 5). As the magnitude of FR increased, body weight and milk yield decreased linearly. Blood urea nitrogen and insulin decreased, whereas nonesterified fatty acids and liver triglyceride content increased linearly with progressive FR. Circulating endotoxin, lipopolysaccharide binding protein, haptoglobin, serum amyloid A, and lymphocytes increased or tended to increase linearly with advancing FR. Circulating haptoglobin decreased (76%) and serum amyloid A tended to decrease (57%) in AL40G relative to AL40 cows. Cows in AL100, AL40, and AL40G treatments were euthanized to evaluate intestinal histology. Jejunum villus width, crypt depth, and goblet cell area, as well as ileum villus height, crypt depth, and goblet cell area, were reduced (36, 14, 52, 22, 28, and 25%, respectively) in AL40 cows compared with AL100 controls. Ileum cellular proliferation tended to be decreased (14%) in AL40 versus AL100 cows. Relative to AL40, AL40G cows had improved jejunum and ileum morphology, including increased villus height (46 and 51%), villus height to crypt depth ratio (38 and 35%), mucosal surface area (30 and 27%), cellular proliferation (43 and 36%), and goblet cell area (59 and 41%). Colon goblet cell area was also increased (48%) in AL40G relative to AL40 cows. In summary, progressive FR increased circulating markers of inflammation, which we speculate is due to increased intestinal permeability as demonstrated by changes in intestinal architecture. Furthermore, GLP2 improved intestinal morphology and ameliorated circulating markers of inflammation. Consequently, FR is a viable model to study consequences of intestinal barrier dysfunction and administering GLP2 appears to be an effective mitigation strategy to improve gut health.  相似文献   

2.
Heat stress is detrimental to dairy production and affects numerous variables including feed intake and milk production. It is unclear, however, whether decreased milk yield is primarily due to the associated reduction in feed intake or the cumulative effects of heat stress on feed intake, metabolism, and physiology of dairy cattle. To distinguish between direct (not mediated by feed intake) and indirect (mediated by feed intake) effects of heat stress on physiological and metabolic indices, Holstein cows (n = 6) housed in thermal neutral conditions were pair-fed (PF) to match the nutrient intake of heat-stressed cows (HS; n = 6). All cows were subjected to 2 experimental periods: 1) thermal neutral and ad libitum intake for 9 d (P1) and 2) HS or PF for 9 d (P2). Heat-stress conditions were cyclical with daily temperatures ranging from 29.7 to 39.2°C. During P1 and P2 all cows received i.v. challenges of epinephrine (d 6 of each period), and growth hormone releasing factor (GRF; d 7 of each period), and had circulating somatotropin (ST) profiles characterized (every 15 min for 6 h on d 8 of each period). During P2, HS cows were hyperthermic for the entire day and peak differences in rectal temperatures and respiration rates occurred in the afternoon (38.7 to 40.2°C and 46 to 82 breaths/min, respectively). Heat stress decreased dry matter intake by greater than 35% and, by design, PF cows had similar reduced intakes. Heat stress and PF decreased milk yield, although the pattern and magnitude (40 and 21%, respectively) differed between treatments. The reduction in dry matter intake caused by HS accounted for only approximately 35% of the decrease in milk production. Both HS and PF cows entered into negative energy balance, but only PF cows had increased (approximately 120%) basal nonesterified fatty acid (NEFA) concentrations. Both PF and HS cows had decreased (7%) plasma glucose levels. The NEFA response to epinephrine did not differ between treatments but was increased (greater than 50%) in all cows during P2. During P2, HS (but not PF) cows had a modest reduction (16%) in plasma insulin-like growth factor-I. Neither treatment nor period had an effect on the ST response to GRF and there was little or no treatment effect on mean ST levels or pulsatility characteristics, but both HS and PF cows had reduced mean ST concentrations during P2. In summary, reduced nutrient intake accounted for just 35% of the HS-induced decrease in milk yield, and modest changes in the somatotropic axis may have contributed to a portion of the remainder. Differences in basal NEFA between PF and HS cows suggest a shift in postabsorptive metabolism and nutrient partitioning that may explain the additional reduction in milk yield in cows experiencing a thermal load.  相似文献   

3.
Effects of heat stress on energetic metabolism in lactating Holstein cows   总被引:6,自引:0,他引:6  
Heat stress has an enormous economic impact on the global dairy industry, but the mechanisms by which hyperthermia negatively affect systemic physiology and milk synthesis are not clear. Study objectives were to evaluate production parameters and metabolic variables in lactating dairy cows during short-term heat stress or pair-fed conditions coupled with bST administration. Twenty-two multiparous Holstein cows were subjected to 3 experimental periods: 1) thermoneutral conditions with ad libitum intake for 7 d (P1); 2) heat stress (HS) with ad libitum intake (n = 10) or pair-fed (PF) in thermoneutral conditions (n = 12) for 7 d (P2), and 3) 7 d of HS or PF in conditions as described in P2 with recombinant bovine somatotropin administered on d 1 (P3). All cows received an intravenous glucose tolerance test (GTT) on d 5 of each period. Heat stress conditions were cyclical and temperatures ranged from 29.4 to 38.9°C. Rectal temperatures and respiration rates increased during heat stress (38.6-40.4°C and 44-89 breaths/min, respectively). Heat stress reduced dry matter intake by 30% and by design PF cows had similar intake reductions (28%). During heat stress and pair-feeding, milk yield decreased by 27.6% (9.6 kg) and 13.9% (4.8 kg), respectively, indicating that reduced feed intake accounted for only 50% of the decreased milk production. Milk yield increased with recombinant bovine somatotropin in both HS (9.7%) and PF (16.1%) cows. Cows in both groups were in positive energy balance (3.95 Mcal/d) during P1 but entered negative energy balance during P2 and P3 (−5.65 Mcal/d). Heat stress and pair-feeding treatments decreased (9.3%) basal glucose concentrations. Heat stress conditions had no effect on basal NEFA levels during P2; however, PF cows (despite a similar calculated energy balance) had a 2-fold increase in basal NEFA concentrations. Both groups had increased plasma urea nitrogen levels during P2 and P3 compared with P1. Basal insulin levels increased (37%) during P2 and P3 in HS cows but did not differ between periods in PF cows. During P2 and compared with P1, PF cows had a decreased rate of glucose disposal, whereas HS cows had a similar disposal rate following the GTT. During P2 and compared with P1, PF cows had a reduced insulin response whereas HS cows had a similar insulin response to the GTT. In summary, reduced nutrient intake accounted for only 50% of heat stress-induced decreases in milk yield, and feed intake-independent shifts in postabsorptive glucose and lipid homeostasis may contribute to the additional reduction in milk yield.  相似文献   

4.
《Journal of dairy science》2022,105(8):7011-7022
Colostrum stimulates gastrointestinal development. Similar to colostrum, transition milk (TM; the first few milkings after colostrum) contains elevated nutrient levels and bioactive components not found in milk replacer (MR), albeit at lower levels than the first colostrum. We hypothesized that feeding neonatal calves TM, compared with MR, for 4 d following colostrum at birth would further stimulate intestinal development. Holstein bull calves were fed 2.8 L of colostrum within 20 min of birth, allocated to 1 of 11 blocks based on birth date and body weight (BW), randomly assigned to MR (n = 12) or TM (n = 11) treatments within block, and fed treatments 3 times per day. Milk from milkings 2, 3, and 4 (TM) of cows milked 2 times daily was pooled by milking number and fed at 1.89 L per feeding; milking 2 was fed at feedings 2 through 5, milking 3 at feedings 6 through 8, and milking 4 at feedings 9 through 12. TM was not pasteurized and contained 17% solids, 5% fat, 7% protein, 4% lactose, and 20 g of IgG per liter on average, whereas MR (as fed) contained 15% solids, 4% protein, 3% fat, 6% carbohydrate, and no IgG. Refusals were similar, so calves fed TM consumed 1.0 Mcal of metabolizable energy per day more than those fed MR. On the morning of d 5, calves were injected i.v. with 5 mg of bromodeoxyuridine per kg of BW and slaughtered 130 min later; then, intestinal sections were excised. Feeding TM, instead of MR, doubled villus length, villus width, villus to crypt ratio, and mucosal length in all intestinal sections, increased submucosal thickness 70% in the proximal and mid jejunum, and tended to increase submucosal thickness in duodenum and ileum. Mucosal surface area was also increased in both the ileum and mid jejunum when feeding TM by 19 and 36%, respectively. Treatment did not alter crypt depth. Bromodeoxyuridine labeling was increased 50% by TM compared with MR in the cells along the epithelium of the crypts and within the villi of all sections, indicating that TM increased cell proliferation compared with MR. Calves fed TM gained more BW than calves fed MR and had improved cough, fecal, nose, and ear scores. We conclude that feeding TM for 4 d following an initial feeding of colostrum stimulates villus, mucosal, and submucosal development in all sections of the small intestine in the first few days of life and improves health and growth.  相似文献   

5.
Activated immune cells are insulin sensitive and utilize copious amounts of glucose. Because chromium (Cr) increases insulin sensitivity and may be immunomodulatory, our objective was to evaluate the effect of supplemental Cr (KemTrace Cr propionate, 20 g/d; Kemin Industries Inc., Des Moines, IA) on immune system glucose utilization and immune system dynamics following an intravenous endotoxin challenge in lactating Holstein cows. Twenty cows (320 ± 18 d in milk) were randomly assigned to 1 of 4 treatments: (1) pair-fed (PF) control (PF-CON; 5 mL of saline; n = 5), (2) PF and Cr supplemented (PF-Cr; 5 mL of saline; n = 5), (3) lipopolysaccharide (LPS)-euglycemic clamp and control supplemented (LPS-CON; 0.375 µg/kg of body weight LPS; n = 5), and (4) LPS-euglycemic clamp and Cr supplemented (LPS-Cr; 0.375 µg/kg of body weight LPS; n = 5). The experiment was conducted serially in 3 periods (P). During P1 (3 d), cows received their respective dietary treatments and baseline values were obtained. At the initiation of P2 (2 d), either a 12-h LPS-euglycemic clamp was conducted or cows were PF to their respective dietary counterparts. During P3 (3 d), cows consumed feed ad libitum and continued to receive their respective dietary treatment. During P2, LPS administration decreased dry matter intake (DMI; 40%) similarly among diets, and by experimental design the pattern and magnitude of reduced DMI were similar in the PF cohorts. During P3, LPS-Cr cows tended to have decreased DMI (6%) relative to LPS-CON cows. Relative to controls, milk yield from LPS-challenged cows decreased (58%) during P2 and LPS-Cr cows produced less (16%) milk than LPS-CON cows. During P3, milk yield progressively increased similarly in LPS-administered cows, but overall milk yield remained decreased (24%) compared with PF controls. There were no dietary treatment differences in milk yield during P3. Circulating insulin increased 9- and 15-fold in LPS-administered cows at 6 and 12 h postbolus, respectively, compared with PF controls. Compared with LPS-CON cows, circulating insulin in LPS-Cr cows was decreased (48%) at 6 h postbolus. Relative to PF cows, circulating LPS binding protein and serum amyloid A from LPS-administered cows increased 2- and 5-fold, respectively. Compared with PF cows, blood neutrophil counts in LPS-infused cows initially decreased, then gradually increased 163%. Between 18 and 48 h postbolus, the number of neutrophils was increased (12%) in LPS-Cr versus LPS-CON cows. The 12-h total glucose deficit was 220 and 1,777 g for the PF and LPS treatments, respectively, but glucose utilization following immune activation was not influenced by Cr. In summary, supplemental Cr reduced the insulin response and increased circulating neutrophils following an LPS challenge but did not appear to alter the immune system's glucose requirement following acute and intense activation.  相似文献   

6.
Two experiments evaluated milk production, serum progesterone and insulin, and reproductive performance of lactating Holstein cows receiving or not receiving Ca salts of polyunsaturated fatty acids (PUFA), or receiving Ca salts of PUFA at different daily frequencies. In experiment 1, 1,125 cows randomly distributed in 10 freestall barns were enrolled. Barns were assigned randomly to receive a high-concentrate diet containing (PF) or not containing (control, CON) 1.1% (dry matter basis) Ca salts of PUFA. Diets were offered 6 times daily, whereas the Ca salts of PUFA were included in the PF treatment in the first feeding of the day. In experiment 2, 1,572 cows were randomly distributed in 10 freestall barns, which were assigned randomly to receive a diet similar to PF, but with Ca salts of PUFA included only in the first feeding of the day (PF1X), or equally distributed across all 6 feedings (PF6X). During both experiments, cows were artificially inseminated 12 h after the onset of estrus. Once per month, cows that did not conceive to artificial insemination were assigned to a fixed-time embryo transfer protocol. Pregnancy was determined via transrectal ultrasonography 28 and 60 d after expected ovulation. Pregnancy loss was considered in cows that were pregnant on d 28 but nonpregnant on d 60. During both experiments, feed intake, milk yield, and milk protein and fat content were recorded weekly. Blood samples were collected concurrently with embryo transfer. During experiment 1, feed intake was similar between treatments. Compared with CON, PF cows had greater milk yield (37.8 vs. 35.3 kg/d), and reduced milk fat content (3.41 vs. 3.55%). However, PF cows had reduced pregnancy losses per service compared with CON (12.6 vs. 18.3%). Serum progesterone was greater and serum insulin tended to be greater in primiparous cows receiving PF compared with CON cohorts (4.50 vs. 3.67 ng of progesterone/mL, and 10.4 vs. 7.5 µUI of insulin/mL). During experiment 2, no treatment effects were detected for feed intake, milk yield, or milk fat, whereas PF1X cows tended to have reduced pregnancy losses per service compared with PF6X (14.4 vs. 18.4%). In summary, feeding Ca salts of PUFA to dairy cows increased milk production, did not alter feed intake, and reduced pregnancy losses per service. Further, the total daily amount of Ca salts of PUFA should be fed during the first feeding of the day to optimize its benefits on pregnancy maintenance of dairy cows.  相似文献   

7.
In trial 1, the effects of dietary energy (102, 131 or 162% of requirement) in the dry period and of sodium bicarbonate (0 or .75% of diet dry matter) in early lactation were assessed with 31 cows in a 3 X 2 factorial arrangement of treatments. Body condition and weight increased linearly with prepartum energy. Dry matter intake and milk yield were similar across treatments through 12 wk postpartum. Sodium bicarbonate increased milk fat content only in the 131% group, an effect apparently related to greater mobilization of fat in that group. In trial 2, energy treatments imposed in late lactation (145 to 55 d prepartum) and in the dry period (55 to 0 d) were 1) cows fed to requirement in both periods, 2) cows overfed in the first and underfed in the second period, 3) cows fed to requirement in the first and overfed in the second period, and 4) cows overfed in both periods. Cows in treatments 1 and 2 (normal) calved in a thinner state than those in 3 or 4 (fat). In the first 12 wk postpartum, intake did not differ, but cows in groups 3 and 4 produced more milk. Sodium bicarbonate imposed factorially postpartum increased milk fat content. Overconsumption of energy prepartum did not impair production when high energy total mixed rations were fed postpartum.  相似文献   

8.
Glutamine, an important fuel and biosynthetic precursor in intestinal epithelial cells, helps maintain intestinal integrity and function when supplemented to the diet of many species. The hypothesis tested here was that glutamine supplementation would overcome the decreased average daily gain (ADG) and altered intestinal morphology caused by milk replacer containing soy protein concentrate (SPC). Holstein calves (9 male and 1 freemartin female per treatment) were assigned to diets of 1) all-milk-protein (from whey proteins) milk replacer, 2) milk replacer with 60% milk protein replacement from SPC, and 3) SPC milk replacer as in diet 2 plus 1% (dry basis) l-glutamine. Milk replacers were reconstituted to 12.5% solids and were fed at 10% of body weight from d 3 to 10 of age, and at 12% of body weight (adjusted weekly) from d 10 through 4 wk of age. No dry feed (starter) was fed, but water was freely available. Glutamine was added at each feeding to reconstituted milk replacer. Five calves from each treatment were slaughtered at the end of wk 4 for measurements of intestinal morphology. The ADG was greater for calves fed the all-milk control than for those fed SPC; glutamine did not improve ADG (0.344, 0.281, and 0.282 kg/d for diets 1 to 3, respectively). Intake of protein was adequate for all groups and did not explain the lower growth for calves fed SPC. Villus height and crypt depth did not differ among treatments in the duodenum. In the jejunum, villus height (713, 506, and 464 μm, for diets 1 to 3, respectively) and crypt depth (300, 209, and 229 μm, respectively) were greater for calves fed all milk protein than for either SPC group. In the ileum, villus height was greater for calves fed all milk than for either soy group (532, 458, and 456 μm), whereas crypt depth tended to be greater (352, 301, and 383 μm for diets 1 to 3, respectively), and the villus to crypt ratio was lower for calves supplemented with glutamine than for those fed SPC alone. Urea N concentration in plasma was greater for calves supplemented with glutamine than for those fed SPC alone, indicating that glutamine was at least partially catabolized. Supplemental l-glutamine did not improve growth or intestinal morphology of calves fed milk replacer containing SPC.  相似文献   

9.
Intestinal diseases in neonatal calves may be due to morphological and functional immaturity. We have studied histomorphology, crypt cell proliferation rates (based on incorporation of 5-bromo-2'-deoxyuridine into DNA), presence of apoptotic cells (based on terminal deoxynucleotidyl transferase-mediated X-dUTP nick end labeling), and brush border enzyme activities in preterm calves (277 d of gestation), euthanized on d 1 (P0) or 8 (P8), and in full-term calves (290 d of gestation), euthanized on d 1 (F0) or 8 (F8). Vacuolated epithelial cells were present in ileum of P0 and F0 but not in P8 and F8. During the first 8 d, villus sizes, crypt depths, and proliferation rates of crypt cells in the small intestine of preterm calves did not significantly change. In contrast, in full-term calves during the first 8 d, villus sizes in jejunum decreased, crypt depths increased in small intestine and colon, and crypt cell proliferation increased in duodenum and jejunum. Submucosal thickness in jejunum was highest in P0, but in ileum it increased with gestational age and feeding. Gestational age x feeding interactions indicated increased activities of aminopeptidase N and reduced lactase activities only in F8 and reduced dipeptidylpeptidase IV activities only in P8. In conclusion, in preterm calves the small intestinal epithelium was immature and brush border enzyme activities differed in part from those in full-term calves.  相似文献   

10.
选用21日龄断奶的杜大长仔猪108头,按试验要求分为3组,每组3个重复,每重复12头.分别饲喂含1%谷氨酰胺(Gln)和0.3%的甘氨酰-谷氨酰胺(Gly-Gln)的日粮,试验期14天,在断奶前、断奶后7天和14天分别屠宰取样.试验结果表明:(1)断奶后7天,日粮中添加Gln和Gly-Gln可显著提高小肠各段绒毛的高度,降低隐窝深度,断奶后14天添加Gly-Gln可显著提高十二指肠、回肠绒毛高度.(2)断奶后7天和14天,添加Gln和Gly-Gln均可显著提高空肠黏膜蔗糖酶和麦芽糖酶活性,对乳糖酶活性无显著影响.(3)断奶后7天,添加Gln和Gly-Gln可降低血浆二胺氧化酶(DAO)活性,提高空肠黏膜DAO活性,断奶后14天,添加Gly-Gln可显著提高空肠黏膜DAO活性.  相似文献   

11.
Reduced access to resources because of increased stocking density may have a detrimental effect on the behavior of the lactating dairy cow. The objective of this study was to determine the short-term responses in behavior, productivity, fecal cortisol metabolites, and udder and leg hygiene of lactating Holstein dairy cows housed at stocking densities of 100 (1 cow per freestall and headlock), 113, 131, and 142%. Multiparous cows (n=92) and primiparous cows (n=44) were assigned to 1 of 4 pens (34 cows per pen) in a 4-row freestall barn. Pens were balanced for parity, milk production, and days in milk. Stocking densities were imposed for 14 d using a 4 × 4 Latin square design. Time spent feeding and time spent ruminating were quantified by 24 h of direct observation of focal cows (n=12 per pen) beginning at 0800 h on d 11 of each period. Data loggers recorded lying behavior (time and bouts) from the same focal cows per pen at 1-min intervals during the final 5 d of each period. Fecal cortisol metabolites were quantified from samples collected on d 13 and 14 of each period from the same focal cows. Displacements from the feed barrier were recorded on a pen basis after 9 milkings over the last 4 d of each period. Productivity was assessed on a pen basis from milk yield (recorded from d 10 to 14 of each period) and milk components (quantified from composite samples collected on d 12 of each period). Milk composition was further analyzed for milk fatty acid profiles, which were determined from a subset (n=6 per pen) of the focal cows. Data were analyzed using the MIXED procedure of SAS, with the pen (n=4 per treatment, except displacements where n=3 per treatment) as the experimental unit. Feeding and ruminating (h/d) did not differ among treatments. Lying time was reduced at stocking densities of 131 and 142%, relative to 100 or 113%. Lying bouts were not affected by treatment. Stocking densities of 131 and 142% reduced the percentage of time cows spent ruminating within a freestall relative to 100%. Displacements from the feed bunk increased linearly across treatments. Fecal cortisol metabolites, udder hygiene score, milk yields, milk composition, and milk fatty acids did not differ among treatments. Decreased lying time and increased aggression at the feed bunk suggest that an alteration of the time budgets of lactating dairy cows may occur at higher stocking densities, but it is unclear at what point these changes might have further biological consequences.  相似文献   

12.
The objective of this study was to evaluate the effects of dry period length and dietary energy source in early lactation on milk production, feed intake, and energy balance (EB) of dairy cows. Holstein-Friesian dairy cows (60 primiparous and 108 multiparous) were randomly assigned to dry period lengths (0, 30, or 60 d) and early lactation ration (glucogenic or lipogenic), resulting in a 3 × 2 factorial design. Rations were isocaloric and equal in intestinal digestible protein. The experimental period lasted from 8 wk prepartum to 14 wk postpartum and cows were monitored for milk yield, milk composition, dry matter intake (DMI), energy balance, and milk fat composition. Prepartum average milk yield for 60 d precalving was 13.8 and 7.7 ± 0.5 kg/d for cows with a 0- and 30-d dry period, respectively. Prepartum DMI and energy intake were greater for cows without a dry period and 30-d dry period, compared with cows with a 60-d dry period. Prepartum EB was greater for cows with a 60-d dry period. Postpartum average milk yield until wk 14 was lower for cows without a dry period and a 30-d dry period, compared with cows with a 60-d dry period (32.7, 38.7, and 43.3 ± 0.7 kg/d for 0-, 30-, and 60-d dry period, respectively). Postpartum DMI did not differ among treatments. Postpartum EB was greater for cows without a dry period and a 30-d dry period, compared with cows with a 60-d dry period. Young cows (parity 2) showed a stronger effect of omission of the dry period, compared with a 60-d dry period, on additional milk precalving (young cows: 15.1 kg/d; older cows: 12.0 kg/d), reduction in milk yield postcalving (young cows: 28.6 vs. 34.8 kg/d; older cows: 41.8 vs. 44.1 kg/d), and improvement of the EB postcalving (young cows: 120 vs. −93 kJ/kg0.75·d; older cows: −2 vs. −150 kJ/kg0.75·d. Ration did not affect milk yield and DMI, but a glucogenic ration tended to reduce milk fat content and increased EB, compared with a more lipogenic ration. Reduced dry period length (0 and 30 d) increased the proportion of short- and medium-chain fatty acids in milk fat and omitting the dry period decreased the proportion of long-chain fatty acids in milk fat. In conclusion, shortening and omitting the dry period shifts milk yield from the postpartum to the prepartum period; this results in an improvement of the EB in early lactation. An increased energy status after a short dry period can be further improved by feeding a more glucogenic ration in early lactation.  相似文献   

13.
The objectives of the present study were to determine the effects of rumen undegradable protein (RUP) level of prepartum diets, the supplementation of a rumen-protected choline product, and their interactions on milk production, feed intake, body weight and condition, blood metabolites, and liver triacylglycerides in dairy cows. Rumen-protected choline (RPC) was fed with two levels of RUP to 48 multiparous Holstein cows in a 3 x 2 factorial arrangement of treatments. Beginning 28 d before expected calving, cows were fed 10% rumen degradable protein, either 0, 6, or 12 g/d of RPC as CapShure (Balchem Corp., Slate Hill, NY) and either 4.0 or 6.2% RUP. After calving and through 120 d of lactation, cows received a common diet and continued RPC as per their prepartum assignment. Prepartum dry matter intake (kg/d) was not affected by RPC or RUP. Postpartum intake decreased when 6.2% RUP was fed prepartum. Milk production to 56 d in milk was decreased when cows were fed 6.2% RUP prepartum. Milk protein (kg/d) decreased when additional RUP was fed prepartum. Cows fed RPC lost more weight during the study period and tended to lose more body condition. Plasma urea nitrogen levels in the prepartum period were reduced for cows fed 4.0% RUP prepartum. Mean liver triacylglyceride determined from samples obtained at -28, -14, +1, +28, and +56 d in milk was not affected by RPC, prepartum RUP, or their combinations. Feeding 12 g of RPC/d in conjunction with 4.0% RUP increased milk production, but feeding RPC with 6.2% RUP prepartum and through 56 d in milk decreased production. The data indicate that 6.2% RUP does not benefit close-up dry cows, and the response to RPC depends the RUP content of the prepartum diet.  相似文献   

14.
《Journal of dairy science》2022,105(8):6616-6627
The objective of this experiment was to compare the effects of calcareous marine algae (CMA; Acid Buf, Celtic Sea Minerals) with a limestone-based control on feed intake, milk production, energy balance, serum mineral metabolites, and inflammatory markers in transition dairy cows. Twenty-two multiparous and 10 primiparous cows were assigned to 2 treatments from 25 d before expected parturition until 42 d postpartum. Cows were assigned to treatment according to a randomized complete block design based on parity, pre-experimental body condition score, previous 305-d milk yield, and either fat + protein yield (for multiparous cows) or predicted transmitting ability for milk yield and fat + protein yield (for primiparous cows). Cows were fed a negative dietary cation-anion difference [?50 mEq/kg] total mixed ration (TMR) based on corn silage, grass silage, and straw during the prepartum period and a 50:50 forage:concentrate TMR based on grass silage, corn silage, and concentrate during the postpartum period. The 2 dietary treatments consisted of a control (CON), which contained limestone as the primary calcium source, and CMA, in which limestone was replaced by CMA at 0.42% and 0.47% of dry matter for the pre- and postpartum periods, respectively. The dietary treatments were fed as 2 different concentrate pellets added to the TMR. Cows fed the CMA diet had higher dry matter intake in both the prepartum (+1.08 kg) and postpartum (+0.94 kg) periods compared with cows fed the CON diet. Fat yield (+0.11 kg), fat concentration (+0.43%), and 4% fat-corrected milk (+1.56 kg) were higher in cows fed CMA than in cows fed CON. The concentration of plasma serum amyloid A was reduced and that of serum P was increased on the CMA treatment compared with the CON treatment. These findings demonstrate the benefits of supplementing CMA to dairy cows during the transition period compared with a CON treatment containing limestone as the primary Ca source.  相似文献   

15.
The objective of our study was to evaluate the effects of timing of palmitic acid (C16:0) supplementation during early lactation on nutrient digestibility, energy intake and balance, and metabolic responses of dairy cows. Fifty-two multiparous cows were used in a randomized complete block design experiment. During the fresh (FR) period (1–24 d in milk) cows were assigned to either a control diet containing no supplemental fat (CON) or a C16:0-supplemented diet [PA; 1.5% of diet dry matter (DM)]. During the peak (PK) period (25–67 d in milk) cows were assigned to either a CON diet or a PA diet (1.5% of diet DM) in a 2 × 2 factorial arrangement of treatments considering the diet that they received during the FR period. During the FR period, compared with CON, PA increased DM digestibility by 3.0 percentage units and neutral detergent fiber (NDF) digestibility by 4.4 percentage units, and the increase in these variables was consistent over time. Although PA did not affect 18-carbon fatty acid (FA) digestibility, it decreased 16-carbon FA digestibility by 10.8 percentage units and total FA digestibility by 4.7 percentage units compared with CON. We observed a tendency for an interaction between treatment and time for total FA digestibility and 16-carbon FA digestibility due to the difference in FA digestibility between PA and CON reducing over time. Compared with CON, PA increased digestible energy intake by 3.9 Mcal/d, metabolizable energy intake by 3.5 Mcal/d, and net energy for lactation intake by 2.5 Mcal/d. The PA diet also increased milk energy output, negative energy balance, and plasma nonesterified fatty acid concentration and reduced plasma insulin concentration. We also observed a tendency for an interaction between treatment and time for energy balance due to cows receiving the PA treatment being in a greater negative energy balance over time. During the PK period, PA increased DM digestibility by 2.9 percentage units and NDF digestibility by 3.5 percentage units compared with CON. Although PA decreased 16-carbon FA digestibility by 7.0 percentage units, PA did not affect 18-carbon FA digestibility or total FA digestibility. Feeding PA during the PK period increased energy intake and milk energy output and did not affect energy balance. In conclusion, feeding a C16:0 supplement to early-lactation cows consistently increased DM and NDF digestibilities and energy intake compared with a control diet containing no supplemental fat. Feeding C16:0 markedly increased milk energy output in both the FR and PK periods but increased negative energy balance only in the FR period.  相似文献   

16.
《Journal of dairy science》2019,102(12):11681-11700
The objectives of this study were to evaluate the effects of replacing 40 mg/kg of Zn from Zn sulfate (control; CON) with Zn AA complex (AvZn) on metabolism and immunological responses following an intravenous lipopolysaccharide (LPS) challenge in lactating cows. Cows were randomly assigned to 1 of 4 treatments: (1) pair-fed (PF) control (PF-CON; 5 mL of saline; n = 5), (2) PF AvZn (PF-AvZn; 5 mL of saline; n = 5), (3) LPS euglycemic clamp control (LPS-CON; 0.375 μg of LPS/kg of BW; n = 5), and (4) LPS euglycemic clamp AvZn (LPS-AvZn; 0.375 μg of LPS/kg of BW; n = 5). Cows were enrolled in 3 experimental periods (P). During period 1 (3 d), cows received their respective dietary treatments and baseline data were obtained. During period 2 (P2; 2 d), a 12-h LPS euglycemic clamp was conducted or cows were PF to their respective dietary counterparts. During period 3 (P3; 3 d), cows received their dietary treatment and consumed feed ad libitum. Mild hyperthermia (1°C) was observed in LPS cows at 3 h postbolus. Throughout P2, the rectal temperature of LPS-AvZn cows was decreased (0.3°C) relative to LPS-CON cows. Administrating LPS decreased dry matter intake (47%) during P2, and by experimental design the pattern was similar in PF cohorts. During P3, dry matter intake from LPS cows remained decreased (15%) relative to PF cows. Milk yield from LPS cows decreased (54%) during P2 relative to PF cows, but it was similar during P3. During P2, somatic cell count increased 3-fold in LPS cows relative to PF controls. Dietary AvZn tended to decrease somatic cell count (70%) during P3 relative to LPS-CON cows. Insulin increased 7-fold in LPS cows at 12 h postbolus and remained increased (4-fold) for the duration of P2. Circulating glucagon from LPS cows increased (65%) during P2, and supplementing AvZn blunted the increase (30% relative to LPS-CON). During P2, circulating cortisol increased 7-fold post-LPS infusion relative to PF cows, and supplementing AvZn decreased cortisol (58%) from 6 to 48 h postbolus relative to LPS-CON cows. Administrating LPS increased circulating LPS-binding protein and serum amyloid A (3- and 9-fold, respectively) relative to PF cows. Compared with LPS-CON, LPS-AvZn cows had increased circulating serum amyloid A (38%) 24 h postbolus. The 12-h total glucose deficit was 36 and 1,606 g for the PF and LPS treatments, respectively, but was not influenced by Zn source. In summary, replacing a portion of the Zn sulfate with Zn AA complex appeared to reduce the inflammatory response but had no effect on the glucose deficit.  相似文献   

17.
《Journal of dairy science》2023,106(9):6060-6079
The aim of this study was to evaluate the inclusion of alfalfa grazing during 8 h continuous or partitioned in 2 separated sessions of 4 h after each milking, on nutrient intake, digestibility, ruminal fermentation, feeding behavior, milk production, milk composition, and milk fatty acid profile, in late-lactation cows fed a partial mixed ration (PMR). Twelve dairy cows (193 ± 83 d in milk, 584 ± 71 kg of body weight) were housed in individual outdoor pens and assigned to treatments according to a 3 × 3 Latin square design replicated 4 times. The treatments were as follows: (1) control (T0), cows were fed a total mixed ration (TMR) provided ad libitum 20.0% crude protein (CP), 32.2% neutral detergent fiber (NDF); (2) fed a diet combining a PMR which had the same ingredient composition as the TMR (60% of ad libitum intake) + 1 session of 8 h of pasture (T8), continuous grazing alfalfa (Medicago sativa; 20.6% CP, 35.8% NDF) after the p.m. milking; and (3) PMR (60% of ad libitum intake) + 2 daily sessions of 4 h of access to pasture after each milking (T4+4). The experiment lasted 57 d and was divided into 3 periods of 19 d each. The first 12 d of each period was used for diet adaptation, and the last 7 d was used for data collection. No differences among treatments were observed for any of the productive variables, feeding efficiency, or purine derivatives excretion. Cows in T0 had greater intake and apparent digestibility of dry matter, organic matter, and nonfibrous carbohydrates compared with T4+4 and T8. Compared with T0, alfalfa grazing increased the concentration of C18:1 trans-11 and decreased those of C16:0 and C17:0 in milk fat. Cows in T4+4 consumed 1.1 more kg DM/d of alfalfa and N provided by alfalfa in the diet was 3 percentage points higher compared with T8 cows (266 vs. 229 g/d, respectively). In addition, T4+4 cows had a greater daily range of ruminal pH than T8 (0.73 vs. 0.93), and the highest concentrations of NH3-N were recorded during the a.m. grazing session while in T8 cows it occurred during the night. In conclusion, including 8 h of alfalfa grazing in T8 and T4+4 treatments allowed the substitution between 35.8 and 38.7% of the total dry matter intake (DMI) of a PMR (with a similar CP concentration to alfalfa) for pasture, maintaining milk solids production and increasing the C18:1 trans-11 of milk fat compared with a TMR in mid late–lactation cows. In an herbage plus PMR diet, splitting the 1 continuous grazing session of 8 h into 2 sessions of 4 h increased the proportion of energy and N provided by alfalfa pasture and reduced PMR intake, without modifying the total nutrient intake or productive performance of cows.  相似文献   

18.
In the current study, we used heat stress (HS) as an oxidative stress model to examine the effects of hydroxy-selenomethionine (HMSeBA), an organic selenium source, on selenium's bioavailability, antioxidant status, and performance when fed to dairy cows. Eight mid-lactation Holstein dairy cows (141 ± 27 d in milk, 35.3 ± 2.8 kg of milk/d, parity 2 or 3) were individually housed in environmental chambers and randomly assigned to 1 of 2 treatments: inorganic Se supplementation (sodium selenite; SS; 0.3 mg of Se/kg of dry matter; n = 4) or HMSeBA supplementation (0.3 mg of Se/kg of dry matter; n = 4). The trial was divided into 3 continuous periods: a covariate period (9 d), a thermal neutral (TN) period (28 d), and a HS period (9 d). During the covariate and TN periods, all cows were housed in TN conditions (20°C, 55% humidity). During HS, all cows were exposed to cyclical HS conditions (32–36°C, 40% humidity). All cows were fed SS during the covariate period, and dietary treatments were implemented during the TN and HS periods. During HS, cows fed HMSeBA had increased Se concentrations in serum and milk, and total Se milk-to-serum concentration ratio compared with SS controls. Superoxide dismutase activity did not differ between Se sources, but we noted a treatment by day interaction in glutathione peroxidase activity as HS progressively reduced it in SS controls, whereas it was maintained in HMSeBA cows. Supplementation with HMSeBA increased total antioxidant capacity and decreased malondialdehyde, hydrogen peroxide, and nitric oxide serum concentrations compared with SS-fed controls. We found no treatment effects on rectal temperature, respiratory rate, or dry matter intake. Supplementing HMSeBA tended to increase milk yield and decrease milk fat percentage. No other milk composition parameters differed between treatments. We observed no treatment effects detected on blood biochemistry, except for a lower alanine aminotransferase activity in HMSeBA-fed cows. These results demonstrate that HMSeBA supplementation decreases some parameters of HS-induced oxidative stress.  相似文献   

19.
This study investigated the effects of tea saponins (TSP) on milk performance, milk fatty acids, and blood immune function in dairy cows. A total of 20 early-lactation Holstein cows (days in milk = 66.4 ± 16.8 d; parity = 1.75 ± 0.91; and milk yield = 36.3 ± 7.32 kg/d; mean ± standard deviation) were randomly divided into 4 homogeneous treatment groups, with TSP added at 0, 20, 30, and 40 g/d per head, respectively. All cows had 2 wk of adaptation and 6 wk of treatments. Feed, milk, and blood were sampled and analyzed weekly. At the end of the experimental period (wk 6), the dry matter intake and yields of energy-corrected milk, milk, and milk protein, fat, and lactose in the cows fed TSP showed a quadratic response, with the lowest values in cows fed TSP at 40 g/d. The milk fat content of cows fed TSP increased linearly. Significant interactions for treatment by week were found in milk C16:1 cis-9 and C18:1 cis-9, with the highest values at wk 2, 3, and 4 in the cows fed TSP at 40 g/d. The levels declined quickly after 4 wk of feeding to values similar to those for other TSP treatments and the control at wk 5 and 6. Plasma malondialdehyde concentration decreased as the supplement level of TSP increased. The concentration of superoxide dismutase increased as the supplement level of TSP increased. The plasma concentration of tumor necrosis factor-α increased as the supplement level of TSP increased. In summary, this study showed that an intermediate dose of TSP (20 and 30 g/d) had no significant effect on feed intake, but the supplementation of 40 g/d TSP decreased feed intake, resulting in a lower milk yield. The energy-corrected milk of cows fed 40 g/d TSP declined at first but increased after 3 wk of feeding, indicating the potential adaptation to high doses of TSP supplements in dairy cows. The supplementation of TSP could reduce oxidative stress in cows and improve the immunity of dairy cows during 6 wk of feeding.  相似文献   

20.
《Journal of dairy science》2023,106(6):4336-4352
Subacute rumen acidosis may cause postruminal intestinal barrier dysfunction, but this does not appear to be due to increased hindgut fermentation. Alternatively, intestinal hyperpermeability may be explained by the plethora of potentially harmful substances (e.g., ethanol, endotoxin, and amines) produced in the rumen during subacute rumen acidosis, which are difficult to isolate in traditional in vivo experiments. Therefore, objectives were to evaluate whether abomasal infusion of acidotic rumen fluid collected from donor (Donor) cows elicits systemic inflammation or alters metabolism or production in healthy recipients. Ten rumen-cannulated lactating dairy cows [249 ± 63 d in milk; 753 ± 32 kg of body weight (BW)] were randomly assigned to 1 of 2 abomasal infusion treatments: (1) healthy rumen fluid (HF; 5 L/h; n = 5) or (2) acidotic rumen fluid (AF; 5 L/h; n = 5) infused. Eight rumen-cannulated cows [4 dry, 4 lactating (lactating = 391 ± 220 d in milk); 760 ± 70 kg of BW] were used as Donor cows. All 18 cows were acclimated to a high-fiber diet (46% neutral detergent fiber; 14% starch) during an 11-d prefeeding period during which rumen fluid was collected for the eventual infusion into HF cows. During period (P) 1 (5 d), baseline data were obtained and on d 5 Donor were corn-challenged (2.75% BW ground corn after 16 h of 75% feed restriction). Cows were fasted until 36 h relative to rumen acidosis induction (RAI), and data were collected through 96 h RAI. At 12 h RAI, an additional 0.50% BW of ground corn was added, and acidotic fluid collections began (7 L/Donor every 2 h; 6 M HCl was added to collected fluid until pH was between 5.0 and 5.2). On d 1 of P2 (4 d), HF/AF cows were abomasally infused with their respective treatments for 16 h, and data were collected for 96 h relative to the first infusion. Data were analyzed in SAS (SAS Institute Inc.) using PROC MIXED. Following the corn challenge in the Donor cows, rumen pH only mildly decreased at nadir (pH = 5.64 at 8 h RAI) and remained above the desired threshold for both acute (5.2) and subacute (5.6) acidosis. In contrast, fecal and blood pH markedly decreased to acidotic levels (nadir = 4.65 and 7.28 at 36 and 30 h RAI, respectively), and fecal pH remained below 5 from 22 to 36 h RAI. In Donor cows, dry matter intake remained decreased through d 4 (36% relative to baseline) and serum amyloid A and lipopolysaccharide-binding protein markedly increased by 48 h RAI in Donor cows (30- and 3-fold, respectively). In cows that received the abomasal infusions, fecal pH decreased in AF from 6 to 12 h relative to the first infusion (7.07 vs. 6.33) compared with HF; however, milk yield, dry matter intake, energy-corrected milk, rectal temperature, serum amyloid A, and lipopolysaccharide-binding protein were unaffected. Overall, the corn challenge did not cause subacute rumen acidosis but markedly decreased fecal and blood pH and stimulated a delayed inflammatory response in the Donor cows. Abomasal infusion of rumen fluid from corn-challenged Donor cows decreased fecal pH but did not cause inflammation, nor did it create an immune-activated phenotype in recipient cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号