首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The densities of total and pathogenic Vibrio parahaemolyticus in 671 samples of molluscan shellfish harvested in 1999 and 2000 from 14 sites in seven Gulf and Atlantic coast states were determined at 2-week intervals over a period of 12 to 16 months in each state. Changes in V. parahaemolyticus densities in shellfish between harvest and sample analysis were minimized with time and temperature controls. Densities were measured by direct plating techniques, and gene probes were used for identification. Total and pathogenic V. parahaemolyticus organisms were identified with probes for the thermolabile direct hemolysin (tlh) gene and the thermostable direct hemolysin (tdh) gene, respectively. An enrichment procedure involving 25 g of shellfish was also used for the recovery of pathogenic V. parahaemolyticus. The densities of V. parahaemolyticus in shellfish from all harvest sites were positively correlated with water temperature. Shellfish from the Gulf Coast typically had higher densities of V. parahaemolyticus than did shellfish harvested from the North Atlantic or mid-Atlantic coast. Vibrio parahaemolyticus counts exceeded 1,000 CFU/g for only 5% of all samples. Pathogenic (tdh+) V. parahaemolyticus was detected in approximately 6% of all samples by both procedures, and 61.5% of populations in the positive samples from the direct plating procedure were at the lower limit of detection (10 CFU/g). The frequency of detection of pathogenic V. parahaemolyticus was significantly related to water temperature and to the density of total V. parahaemolyticus. The failure to detect pathogenic V. parahaemolyticus in shellfish more frequently was attributed to the low numbers and uneven distribution of the organism.  相似文献   

2.
目的了解北京市市售带壳牡蛎致病性弧菌污染状况。方法 2014年2~11月每月在某水产品批发市场的摊位抽样200只带壳牡蛎,共80份样品(其中腮和肠样品分别为40份)。用常规培养方法检测牡蛎腮和肠(含便)中致病性弧菌,对副溶血性弧菌进行血清学分型,荧光定量PCR检测副溶血性弧菌毒力基因tdh、trh和tlh。结果 80份牡蛎样品中,致病性弧菌阳性样品检出率为62.50%(50/80),副溶血性弧菌阳性菌株检出率为33.75%(27/80),溶藻弧菌阳性菌株检出率为31.25%(25/80);各牡蛎腮和肠样品中,致病性弧菌阳性检出率为67.50%(27/40)和57.50%(23/40);27株副溶血性弧菌共9种血清型;毒力基因检测结果表示,tlh均为阳性,tdh和trh均为阴性。结论北京市市售带壳牡蛎中致病性弧菌污染严重,以副溶血性弧菌和溶藻弧菌检出为主。  相似文献   

3.
针对副溶血弧菌常见的11种毒力基因(tox R、Collagenase、tox S、trh、tdh、tlh、Ure R、Fla A、omp W、Asp A、fur),建立了两套六重PCR检测体系,应用于副溶血弧菌环境分离株和水产品分离株的毒力基因分布情况调查。在调查的248株副溶血弧菌中,鞭毛丝蛋白基因Fla A、外膜蛋白基因omp W和铁吸收调节蛋白基因fur的分布最广(100%),其次为碱性丝氨酸蛋白酶基因Asp A(99.60%),胶原蛋白酶基因Collagenase、不耐热性溶血毒素基因tlh以及毒力调控基因tox R和tox S的分布率均在90%以上且tox R和tox S的分布极为相似,尿素酶基因Ure R的分布极少(1.21%),而耐热直接溶血素基因tdh和耐热相关溶血素基因trh在这248株副溶血弧菌中没有检出。本研究建立的多重PCR检测体系能快速、高效地检测多个毒力基因的分布情况,为副溶血弧菌的毒力机制研究和风险评估提供方法和依据。  相似文献   

4.
Interest in Vibrio parahaemolyticus (Vp) increased in the United States following Vp-associated gastroenteritis outbreaks in 1997 and 1998 involving the West Coast and other areas. The present study evaluated multiple aspects of Vp ecology in the Pacific Northwest with three objectives: (i) to determine the effect of low-tide exposure on Vp levels in oysters, (ii) to determine the relationship between total and pathogenic Vp, and (iii) to examine sediments and aquatic fauna as reservoirs for pathogenic Vp. Samples were collected from intertidal reefs along Hood Canal, Wash., in August 2001. Fecal matter from marine mammals and aquatic birds as well as intestinal contents from bottom-dwelling fish were tested. Total and pathogenic Vp levels in all the samples were enumerated with colony hybridization procedures using DNA probes that targeted the thermolabile direct hemolysin (tlh) and thermostable direct hemolysin (tdh) genes, respectively. The mean Vp densities in oysters were four to eight times greater at maximum exposure than at the corresponding first exposure. While tdh-positive Vp counts were generally < or = 10 CFU/g at first exposure, counts as high as 160 CFU/g were found at maximum exposure. Vp concentrations in sediments were not significantly different from those in oysters at maximum exposure. Pathogenic (tdh positive) Vp was detected in 9 of 42 (21%) oyster samples at maximum exposure, in 5 of 19 (26%) sediment samples, but in 0 of 9 excreta samples. These results demonstrate that summer conditions permit the multiplication of Vp in oysters exposed by a receding tide.  相似文献   

5.
Occurrence of Vibrio parahaemolyticus in Two Oregon Oyster-growing Bays   总被引:1,自引:0,他引:1  
ABSTRACT: Occurrence of Vibrio parahaemolyticus in 2 Oregon oyster-growing areas (Yaquina andTillamook Bays) was studied from November 2002 to October 2003. Vibrio parahaemolyticus was detected in 15.0% of oyster, 20.0% of seawater, and 47.5% of sediment samples with very low levels of pathogenic strains being detected in oysters (≤3.6 most probable number [MPN] /g). The densities of total and pathogenic V. parahaemolyticus were higher in sediment (≤1100 and ≤43 MPN/g) than in seawater (≤15 and ≤3.6 MPN/100 mL) or oyster (≤43 and ≤3.6 MPN/ g). Densities of V. parahaemolyticus in both bays were positively correlated to water temperatures ( P < 0.01), with higher densities in samples being detected in summer, especially July and August. There was no correlation between the densities of V. parahaemolyticus and water salinity or the densities of V. parahaemolyticus and bacterial populations in seawater. Freshly harvested oysters should be kept at refrigeration temperatures to prevent rapid growth of pathogenic V. parahaemolyticus in contaminated oysters.  相似文献   

6.
This study examined the variability in the levels of total and pathogenic Vibrio parahaemolyticus in individual oysters. Twenty oysters were collected on three occasions (in June, July, and September 2001) from a site near Mobile Bay, Ala. Ten of these oysters were tested immediately, and 10 were tested after 24 h of storage at 26 degrees C. Levels of total and pathogenic V. parahaemolyticus were determined by alkaline phosphatase-labeled DNA probe procedures targeting the thermolabile hemolysin and thermostable direct hemolysin genes, respectively. Similar V. parahaemolyticus levels (200 to 2,000 CFU/g) were found in nearly 90% of the oysters (for all sampling occasions) prior to storage. The log-transformed densities (means +/- standard deviations) of V. parahaemolyticus in oysters immediately after harvest were 2.90 +/- 0.91, 2.88 +/- 0.36, and 2.47 +/- 0.26 log10 CFU/g for June, July, and September, respectively. After storage for 24 h at 26 degrees C, the mean V. parahaemolyticus densities increased approximately 13- to 26-fold. Before storage, pathogenic V. parahaemolyticus was detected in 40% (10 to 20 CFU/g) of the oysters collected in June and July but was not detected in any oysters collected in September. After storage, pathogenic V. parahaemolyticus was detected in some oysters at levels of > 100 CFU/g. These data should aid in the development of sampling protocols for oyster monitoring programs and in the determination of exposure distributions associated with raw oyster consumption.  相似文献   

7.
From June 1998 to July 1999, 370 lots of oysters in the shell were sampled at 275 different establishments (71%, restaurants or oyster bars; 27%, retail seafood markets: and 2%, wholesale seafood markets) in coastal and inland markets throughout the United States. The oysters were harvested from the Gulf (49%). Pacific (14%), Mid-Atlantic (18%), and North Atlantic (11%) Coasts of the United States and from Canada (8%). Densities of Vibrio vulnificus and Vibrio parahaemolyticus were determined using a modification of the most probable number (MPN) techniques described in the Food and Drug Administration's Bacteriological Analytical Manual. DNA probes and enzyme immunoassay were used to identify suspect isolates and to determine the presence of the thermostable direct hemolysin gene associated with pathogenicity of V. parahaemolyticus. Densities of both V. vulnifcus and V. parahaemolyticus in market oysters from all harvest regions followed a seasonal distribution, with highest densities in the summer. Highest densities of both organisms were observed in oysters harvested from the Gulf Coast, where densities often exceeded 10,000 MPN/g. The majority (78%) of lots harvested in the North Atlantic, Pacific, and Canadian Coasts had V. vulnificus densities below the detectable level of 0.2 MPN/g; none exceeded 100 MPN/g. V. parahaemolyticus densities were greater than those of V. vulnificus in lots from these same areas, with some lots exceeding 1,000 MPN/g for V. parahaemolyticus. Some lots from the Mid-Atlantic states exceeded 10,000 MPN/g for both V. vulnificus and V. parahaemolyicus. Overall, there was a significant correlation between V. vulificus and V. parahaemolyticus densities (r = 0.72, n = 202, P < 0.0001), but neither density correlated with salinity. Storage time significantly affected the V. vulnificus (10% decrease per day) and V. parahaemolyticus (7% decrease per day) densities in market oysters. The thermostable direct hemolysin gene associated with V parahaemolyticus virulence was detected in 9 of 3,429 (0.3%) V. parahaemolyticus cultures and in 8 of 198 (4.0%) lots of oysters. These data can be used to estimate the exposure of raw oyster consumers to V. vulnificus and V. parahaemolyticus.  相似文献   

8.
This study examined the relationship between levels of total Vibrio parahaemolyticus found in oyster tissues and mantle fluid with the goal of using mantle fluid as a template matrix in a new quantitative real-time PCR assay targeting the thermolabile hemolysin (tlh) gene for the enumeration of total V. parahaemolyticus in oysters. Oysters were collected near Mobile Bay, Ala., in June, July, and September and tested immediately after collection and storage at 26 degrees C for 24 h. Initial experiments using DNA colony hybridization targeting tlh demonstrated that natural V. parahaemolyticus levels in the mantle fluid of individual oysters were strongly correlated (r = 0.85, P < 0.05) with the levels found in their tissues. When known quantities of cultured V. parahaemolyticus cells were added to real-time PCR reactions that contained mantle fluid and oyster tissue matrices separately pooled from multiple oysters, a strong linear correlation was observed between the real-time PCR cycle threshold and the log concentration of cells inoculated into each PCR reaction (mantle fluid: r = 0.98, P < 0.05; and oyster: r = 0.99, P < 0.05). However, the mantle fluid exhibited less inhibition of the PCR amplification than the homogenized oyster tissue. Analysis of natural V. parahaemolyticus populations in mantle fluids using both colony hybridization and real-time PCR demonstrated a significant (P < 0.05) but reduced correlation (r = -0.48) between the two methods. Reductions in the efficiency of the real-time PCR that resulted from low population densities of V. parahaemolyticus and PCR inhibitors present in the mantle fluid of some oysters (with significant oyster-to-oyster variation) contributed to the reduction in correlation between the methods that was observed when testing natural V. parahaemolyticus populations. The V. parahaemolyticus-specific real-time PCR assay used for this study could estimate elevated V. parahaemolyticus levels in oyster mantle fluid within 1 h from sampling time.  相似文献   

9.
Production of the thermostable direct hemolysin (TDH) by Vibrio parahaemolyticus is associated with pathogenicity of the organism and is encoded by the tdh gene. The timely resolution of seafood-associated outbreaks requires rapid and accurate detection of pathogenic V. parahaemolyticus. The specificity of alkaline phosphatase- and digoxigenin-labeled tdh gene probes was evaluated against 61 strains of V. parahaemolyticus (including isolates from recent outbreaks involving oysters from the Pacific Northwest, Texas, and New York), 85 strains of other vibrios, and 7 strains of non-vibrio species from clinical and environmental sources. The probes were specific for detection of the V. parahaemolyticus tdh gene.  相似文献   

10.
The occurrence of the hemolysin genes, tdh and trh, in Vibrio parahaemolyticus strains isolated from environmental samples collected in two French coastal areas, clinical samples, and seafood products imported into France was studied. Polymerase chain reaction (PCR) with two sets of primers was used to detect the hemolysin genes. Most of the clinical isolates (91%) and 1.5% of the isolates from seafood possessed the hemolysin genes. Three and fifteen percent, respectively, of the two groups of environmental strains carried the hemolysin genes depending on the geographic site. The tdh and trh genes play important roles in virulence. Thus, our results indicate that pathogenic V. parahaemolyticus isolates are present in French coastal areas and in seafood imported into France. Furthermore, they may also be present in French seafood products.  相似文献   

11.
12.
基于环介导等温扩增法(LAMP)对上海市8-10月市售贝类产品中副溶血性弧菌毒力菌株(tdh和trh毒力基因)进行检测分析,共检测贝类样品180份,6个常规品种,实验同时采用PCR测定方法进行对比。结果表明,含tdh和trh毒力基因的副溶血性弧菌在市售贝类中的检出率分别是12.77%和11.66%,PCR的分析结果为11.11%和7.78%。对分离的毒力菌株进行血清型分型后发现了2株O3:K6型副溶血性弧菌,其中1株为毒力基因双阳性菌(tdh+/trh+)。2株O3:K6型副溶血性弧菌的PFGE条带型相似度较高(相似度90%)。这些结果表明上海市售贝类产品中副溶血性弧菌毒力菌株存在一定的污染,应引起足够重视。双阳性O3:K6型副溶血性弧菌的出现值得关注,应对各血清型菌株尤其是O3:K6型副溶血性弧菌的流行情况加强监测。PCR检测结果对比分析表明,LAMP方法适用于贝类产品中副溶血性弧菌毒力菌株的检测分析。  相似文献   

13.
建立了一种特异、灵敏、稳定的副溶血性弧菌(Vibrio parahemolyticus,VP)致病基因的检测方法。对已建立的副溶血性弧菌致病基因tdh、trh和tlh荧光PCR方法的特异性、灵敏度和重复性进行检测,以验证该方法的有效性。该方法与副溶血性弧菌反应良好,与其他弧菌属和非弧菌属的6株常见食源性致病菌无交叉反应;检测了6株副溶血性弧菌标准菌株和分离株,3种致病基因检出限分别为tlh 6~43 CFU/mL,tdh 97~1 700 CFU/mL,trh 1 100~4 000 CFU/mL;3种致病基因20次重复组内变异系数在0.96%~1.50%,组间变异系数在2.70%~4.10%。该方法操作简便,特异性强,灵敏度高,能够准确、快速、灵敏地检测水产品中副溶血性弧菌。  相似文献   

14.
PCR is an important method for the detection of thermostable direct hemolysin gene (tdh)-positive (pathogenic hemolysin-producing) strains of Vibrio parahaemolyticus in seafood because tdh-negative (nonpathogenic) V. parahaemolyticus strains often contaminate seafood and interfere with the direct isolation of tdh-positive V. parahaemolyticus. In this study, the use of PCR to detect the tdh gene of V. parahaemolyticus in various seafoods artificially contaminated with tdh-positive V. parahaemolyticus was examined. PCR was inhibited by substances in oysters, squid, mackerel, and yellowtail but not by cod, sea bream, scallop, short-necked clam, and shrimp. To improve detection, DNA was purified by either the silica membrane method, the glass fiber method, or the magnetic separation method, and the purified DNA was used as the PCR primer template. For all samples, the use of the silica membrane method and the glass fiber method increased detection sensitivity. The results of this study demonstrate that the use of properly purified template DNA for PCR markedly increases the effectiveness of the method in detecting pathogenic tdh-positive V. parahaemolyticus in contaminated seafood.  相似文献   

15.
The incidence and levels of Vibrio parahaemolyticus and thermostable direct hemolysin gene (tdh)-positive organisms in retail seafood were determined. The most probable number-polymerase chain reaction (MPN-PCR) method using a PCR procedure targeting the species-specific thermolabile hemolysin gene (tlh) and tdh was used to determine the levels of V. parahaemolyticus and tdh-positive organisms, respectively. In seafood for raw consumption, V. parahaemolyticus was found in four (13.3%) of 30 fish samples, 11 (55.0%) of 20 crustacean samples, and 29 (96.7%) of 30 mollusc samples. Levels of V. parahaemolyticus were below 10(4) MPN/100 g in all fish and crustacean samples tested. However, they were above 10(4) MPN/100 g in 11 (36.7%) of the 30 mollusc samples. In all seafood for raw consumption, the level of tdh-positive organisms was below the limit of detection (< 30 MPN/100 g). In seafood for cooking, V. parahaemolyticus was found in 15 (75.0%) of 20 fish samples, nine (45.0%) of 20 crustacean sample, and 20 (100%) of 20 mollusc samples. Levels of V. parahaemolyticus were above 10(4) MPN/100 g in only three (15.0%) and one (5.0%) of the 20 fish and 20 crustacean samples, respectively. However, they were above 10(4) MPN/100 g in 18 (90.0%) of the 20 mollusc samples. In seven (35.0%) of the 20 mollusc samples, tdh-positive organisms were found and their levels ranged from 3.6x10 to 1.1 x 103 MPN/100 g. From four of seven tdhpositive samples, tdh-positive V. parahaemolyticus was isolated.  相似文献   

16.
During two surveys conducted in 2008 and 2009, the culture method described in the international standard ISO/TS 21872-1 was applied to the detection of Vibrio parahaemolyticus and Vibrio cholerae in 112 living bivalve mollusc samples, with a chromogenic medium used in addition to the TCBS agar, as second selective isolation medium and for enumeration of V. parahaemolyticus and V. cholerae by surface inoculation. A PCR method for detection of these 2 Vibrio species and the hemolysin genes tdh and trh, was applied in parallel. In 2009, the survey was extended to finfish fillets and crustaceans. PCR was also used for species confirmation of characteristic colonies. The identity of the PCR products, specifically targeting V. parahaemolyticus, was checked by sequencing. Occurrence of V. parahaemolyticus and V. cholerae isolates in living bivalve molluscs ranged from 30.4% to 32.6% and from 1.4% to 4.7% respectively. In frozen crustaceans (2009 survey) V. parahaemolyticus and V. cholerae isolates were respectively found in 45% and 10% of the samples. No V. parahaemolyticus or V. cholerae was detected in frozen fish fillets, neither by the ISO method nor by PCR. In 2009, enteropathogenic V. parahaemolyticus (trh+) was isolated from 4 out of 43 oyster samples while the trh gene was present in V. alginolyticus strains and in samples where V. parahaemolyticus was not detected (9 over 112 samples). The ISO method failed to isolate V. parahaemolyticus in 44% to 53% of the living bivalve molluscs where PCR detected the toxR gene specific of V. parahaemolyticus (Vp-toxR). Our results highlighted the need for a revision of the ISO/TS 21872-1 standard, at least, for analysis of living bivalve molluscs, and confirmed the increasing concern of enteropathogenic V. parahaemolyticus in French bivalve molluscs. Enrichment at 41.5°C was questioned and some reliable solutions for the improvement of the ISO/TS 21872-1 method, such as the PCR method for screening of positive samples and confirmation of colonies, were pointed out.  相似文献   

17.
目的了解烟台地区引发食物中毒的副溶血性弧菌分离菌株的主要血清型、抗生素耐药情况、致病力的强弱以及传播流行趋势。方法对2017~2019年11起食物中毒爆发事件中分离的14株副溶血性弧菌进行血清分型;采用微量肉汤稀释法进行药敏试验;采用PCR技术检测毒力基因不耐热溶血素(tld)、耐药直接溶血素(tdh)和溶血相关溶血素(trh);采用脉冲场电泳(pulse-field gel electrophoresis,PFGE)进行分子分型的溯源分析。结果引发烟台地区食物中毒爆发的副溶血性弧菌血清型多样,但以O3:K6型为主(28.6%),分离菌株中11株(78.6%)表现为tdh阳性和trh阴性,3株(21.4%)未携带tdh和trh基因,对头孢唑啉(71.4%)、多粘菌素E(57.1%)、美罗培南和阿莫西林/克拉维酸(7.1%)均出现耐药情况,对氨苄西林(21.4%)、多粘菌素B(14.3%)为中度敏感,耐药谱显示没有出现对3种以上同时耐药的情况,但是42.9%的分离菌株对2种同时耐药情况。结论烟台地区引发食物中毒爆发的副溶血性弧菌以O3:K6型为主,主要携带tdh,对头孢唑啉耐药和多粘菌素耐药普遍存在,具有聚集性爆发的风险,因此加强腹泻病的监测,充分利用国家致病菌识别网集中进行本地区分离菌株的病原特征研究是防控食物中毒爆发的有效手段。  相似文献   

18.
Reliable methods are needed to detect total and pathogenic Vibrio parahaemolyticus. One marker of V. parahaemolyticus virulence is the thermostable-related hemolysin. We developed an alkaline phosphatase-labeled DNA probe method for the specific detection and enumeration of trh-positive V. parahaemolyticus by colony hybridization. The probe was tested against a panel of 200 bacterial strains and determined to be specific for trh-positive V. parahaemolyticus. Additionally, the trh alkaline phosphatase probe colony hybridization was successfully used to detect and enumerate trh-positive V. parahaemolyticus in seafood and water samples collected from the United States and the United Kingdom.  相似文献   

19.
The occurrence of various Vibrio species in water, sediment and shrimp samples from multiple shrimp farm environments from the east and west coast of India was studied. The relative abundance was higher in west coast farms (ca. 10(4) cfu/ml water) when compared to the east coast (ca. 10(2) cfu/ml water). Vibrio alginolyticus (3-19%), V. parahaemolyticus (2-13%), V. harveyi (1-7%) and V. vulnificus (1-4%) were the predominant Vibrio species identified by standard biochemical testing. In some cases, V. cholerae could be found, but all isolates were negative for the cholera toxin (ctx) gene that is associated with choleragenic strains. The biochemical identification of V. parahaemolyticus, the other human pathogen among the species mentioned above, was confirmed by PCR targeting the toxR gene and a 387 bp chromosomal locus specific for this species. Furthermore, the presence of the virulence-associated tdh (thermostable direct haemolysin) and trh (TDH-related haemolysin) genes in the V. parahaemolyticus isolates was also detected by PCR. Only 2 out of 47 isolates were tdh positive and one contained the trh gene. However, since V. cholerae, V. parahaemolyticus and V. vulnificus species are recognized as a major cause of seafood-borne illness, it is important to pay attention to post-harvest handling and adequate cooking.  相似文献   

20.
养殖海水贝类中副溶血性弧菌的致病性及 耐药性分析   总被引:1,自引:0,他引:1  
目的对从山东和辽宁沿海地区养殖海水贝类中分离到的84株副溶血性弧菌进行致病性及耐药性分析。方法通过PCR扩增及测序法检测毒力基因,通过神奈川试验测定溶血能力,采用K-B法进行药敏试验分析。结果 84株菌均含有tlh基因,均不含trh基因,有1株菌含tdh基因。tdh基因阳性菌株的神奈川试验呈阳性,其余菌株均呈阴性。菌株对氨苄西林、头孢呋辛钠和复方新诺明的耐药率分别为91.7%、6.0%和1.2%。所有菌株对阿莫西林/克拉维酸、头孢曲松、头孢吡肟、阿米卡星、庆大霉素、亚胺培南、氧氟沙星、环丙沙星、萘啶酸、氯霉素、氟苯尼考和呋喃妥因高度敏感。结论海水贝类中含有少量致病性副溶血性弧菌,菌株存在一定程度的耐药性,提示应加强对海产品中副溶血性弧菌致病性及耐药性的监控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号