首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
目的对采用大孔吸附树脂法分离纯化茶叶籽饼粕中茶皂素的工艺进行优化,为进一步开发利用茶叶籽资源提供依据。方法以茶皂素吸附率与解吸率为指标,通过静态吸附与解吸实验筛选最优树脂。通过单因素实验、正交实验及验证性实验,优化最优树脂动态吸附与解吸茶皂素的工艺参数。结果D101树脂的静态吸附量与解吸率分别为142.974 mg/g和98.02%,为分离纯化料液中茶皂素的最优树脂;当主要考虑茶皂素得率时,其最优动态吸附与解吸工艺参数为上样质量浓度10 mg/m L、上样流速3 BV/h、上样体积6 BV、乙醇洗脱体积浓度80%、洗脱流速3 BV/h、洗脱剂体积5 BV,在该工艺参数条件下,茶皂素得率为74.25%,纯度为84.30%;当主要考虑茶皂素纯度时,最优动态吸附与解吸工艺参数为上样质量浓度10 mg/m L、上样流速4 BV/h、上样体积7 BV、乙醇洗脱体积浓度70%、洗脱流速3 BV/h、洗脱体积5 BV,在该工艺参数条件下,茶皂素纯度为97.7%,得率为72.04%。结论 D101大孔吸附树脂是一种可应用于茶叶籽饼粕中茶皂素分离纯化的较好树脂。  相似文献   

2.
目的:研究大孔吸附树脂分离纯化桃花多酚的最佳工艺条件。方法:比较了6种大孔吸附树脂对桃花多酚的静态吸附与解吸性能,筛选出最佳树脂并对其进行动态吸附、解吸实验,确定最佳纯化桃花多酚工艺条件。结果:D-101树脂具有较好的吸附解吸效果。最佳工艺为:上样浓度约为0.744mg/mL,上样流速1BV/h,上样体积4.5BV,先用去离子水洗至洗脱液无色,再用80%乙醇以1BV/h的流速进行洗脱,洗脱液用量约3BV。该条件下桃花多酚的质量分数可从6.17%提高到29.30%±3.04%,桃花多酚的总收率达79.01%±3.39%。结论:该方法简单可行,效果较好,可满足工业生产要求。  相似文献   

3.
研究陕产重楼中总皂苷利用大孔吸附树脂纯化的最优工艺。应用7种大孔吸附树脂吸附重楼中的总皂苷进行静态实验,筛选得到最佳树脂;通过动态实验确定最佳树脂对重楼总皂苷的纯化的最优工艺参数。结果表明,HPD-400A树脂纯化重楼总皂苷的效果最优,最优工艺条件为上样液质量浓度5mg/mL,上样量8BV,流速3BV/h,解吸流速2BV/h,解吸剂体积分数75%的乙醇,洗脱剂用量4BV,按此工艺条件制备的重楼总皂苷的含量为62.68%;Freundlich等温吸附模型可更好的描述树脂对重楼总皂苷的吸附,采用HPD-400A树脂分离纯化陕产重楼中的总皂苷效果较好。  相似文献   

4.
以胭脂虫干体为原料,通过粉碎、浸提、树脂吸附、解吸浓缩、冷冻干燥等得到胭脂虫红色素粉末.以色素的吸光度值为指标,通过比较提取率的高低,对提取温度、提取时间、料液比、提取次数等因素进行了研究,确定胭脂虫红色素的最佳提取工艺条件为:提取温度85℃、浸提时间2h、料液比为1:60、提取次数为2次.通过静态吸附和解吸实验确定最佳的纯化树脂为S-8大孔吸附树脂.再通过静态和动态吸附、解吸实验对吸附率和解吸率进行研究,确定胭脂虫红色素的最佳纯化工艺条件为:上柱浓度为0.750×15、流速为2BV/h、pH为4;洗脱剂为pH2的60%的乙醇、洗脱流速为2BV/h.通过最佳提取工艺提取、最佳纯化工艺纯化、冷冻干燥得到色素粉末,其色价为102,胭脂虫红酸的含量达到了70.93%.  相似文献   

5.
目的:利用大孔吸附树脂纯化技术研究倒卵叶五加中总皂苷的最优纯化工艺。方法:通过对NKA-9、D101、LS-303、LS-45和LS-21等5种大孔吸附树脂的静态实验,筛选得到最佳树脂;在此基础上,通过动态实验确定最佳树脂对倒卵叶五加总皂苷的纯化的最优工艺参数。结果:LS-303树脂纯化倒卵叶五加总皂苷的效果最好,最优工艺条件为:上样液浓度约为3mg·mL-1,上样量为9BV,上样流速为2BV/h;解吸剂为80%的乙醇,解吸流速2BV/h,洗脱剂用量为2.5BV。结论:LS-303型大孔吸附树脂可有效分离纯化倒卵叶五加中的总皂苷。  相似文献   

6.
通过吸附、解吸实验,筛选适合分离纯化石榴皮多酚的大孔吸附树脂并确立纯化工艺参数。结果表明:HZ-818树脂为石榴皮多酚分离纯化的理想树脂。当提取液上样浓度为2.5 mg/mL,pH为3,上样流速为5 BV/h,洗脱剂浓度为70%乙醇,解吸液流速为2 BV/h,纯化效果最好,其多酚的质量分数由34.0%提高到72.3%。  相似文献   

7.
以鼠曲草黄酮的吸附率、解吸率为指标,考察了六种大孔吸附树脂对鼠曲草中总黄酮的纯化性能,筛选出最佳的大孔吸附树脂,采用动态法分析了吸附流速、pH条件、解吸液乙醇浓度和解吸液流速对吸附解吸的影响,同时采用高效液相色谱法进行分析检测表征了纯化的效果。实验结果表明,大孔吸附树脂AB-8对鼠曲草总黄酮有很好的吸附和解吸性能,并确定了最佳的吸附和解吸条件为:样品液pH=4.0、吸附流速为2BV/h、解吸液乙醇浓度为50%、解吸流速为2BV/h。树脂饱和吸附量为14.7mg/g湿树脂,在此条件下鼠曲草黄酮纯度由原来的28.0%提升到59.4%。  相似文献   

8.
在前期研究麦胚黄酮最佳浸提工艺基础上,为探讨麦胚黄酮纯化工艺,本实验选择大孔树脂对其进行分离纯化。以吸附能力、吸附率及解吸率为考察指标,从7种型号大孔树脂中筛选出分离纯化麦胚黄酮效果优的树脂,并确定该树脂的最佳工艺条件。结果表明,H103大孔树脂的吸附率、吸附能力都较高,为麦胚黄酮最佳分离树脂,其最佳工艺条件为上样浓度约0.65 mg/m L、上样速度2.0 BV/h、解吸乙醇浓度70%、解吸速度2.0 BV/h。经H103树脂分离后的麦胚黄酮纯度大大提高,为11.77%,比浸提液中麦胚黄酮纯度0.96%提高了12.26倍。  相似文献   

9.
用80%乙醇(含0.1%乙酸)超声辅助提取黑加仑多酚(简写为BCP),比较五种大孔树脂对BCP的静态吸附和解吸能力,筛选出纯化BCP的最佳树脂;结果表明NKA-9为BCP纯化的最佳树脂,具有较好的吸附、解吸效果;对BCP的纯化动态吸附和洗脱条件进行研究;结果表明吸附BCP条件为上样液p H 3,质量浓度5 mg/m L、吸附流速2BV/h。解吸条件为解吸液洗脱液体积分数70%、解吸流速2 BV/h、解吸液所用体积为200 m L。  相似文献   

10.
采用大孔吸附树脂纯化樟树叶醇提液中木脂素类化合物。通过对比6种大孔树脂对樟树叶中木脂素吸附-解吸效果,从中筛选一种最适大孔吸附树脂作为纯化材料,并研究上样浓度、上样流速、上样体积对大孔树脂吸附率的影响,以及洗脱剂浓度、洗脱流速、洗脱剂用量对大孔树脂解吸率的影响,通过正交试验优化大孔树脂纯化木脂素的工艺。试验结果表明,大孔树脂最佳吸附-解吸工艺条件为:7BV上样量、2.12mg/mL上样浓度、1.0 mL/min上样速率、80%乙醇洗脱剂、洗脱流速2BV/h,洗脱剂用量8BV,该条件下樟树叶中木脂素得率为66.68%,纯度为15.91%,表明该大孔树脂对于樟树叶中木脂素纯化效果较好。  相似文献   

11.
结合当前茶学中酯型儿茶素研究热点和工业生产中差异化茶多酚产品需求,对LP-8大孔树脂分离制备高含量酯型儿茶素茶多酚开展研究。先经静态吸附和洗脱实验表明LP-8大孔树脂对茶多酚(含酯型儿茶素)和咖啡碱具有较大的吸附选择性差异,用体积分数70%乙醇溶液洗脱即可获较理想的茶多酚回收率,因此确定LP-8树脂具有分离制备高含量酯型儿茶素茶多酚的可行性。再经静态吸附动力学和等温吸附实验,结合Langmuir拟合方程推算,25 ℃下LP-8大孔树脂的饱和吸附量为70.9 mg/g。经动态吸附实验,确定了最佳吸附条件为上样流速1 BV/h、上样质量浓度30 mg/mL,利用不同体积分数的乙醇溶液对饱和吸附样进行梯度洗脱,40%~60%洗脱合并液中酯型儿茶素占茶多酚比例达78.0%(表没食子儿茶素没食子酸酯占茶多酚总量的61.0%),即利用LP-8大孔树脂获得了高含量酯型儿茶素茶多酚。  相似文献   

12.
于博  王旭峰  李文  李博  何计国 《食品科学》2009,30(14):132-135
研究委陵菜黄酮的提取及大孔树脂纯化条件。结果表明:委陵菜黄酮的最佳提取条件为溶剂采用60% 乙醇、料液比1:40(m/V)、提取时间75min、超声温度80℃,各因素均对提取率有显著(p < 0.05)影响,此条件下,提取量可达39.329mg/g;HPD600 型树脂对委陵菜中的黄酮有较好的吸附和洗脱效果,柱体积为50ml,其纯化条件为40BV,流速2BV/h,水洗,然后用5BV、60% 乙醇洗脱。经纯化后委陵菜黄酮纯度为60.28%;最终产品中黄酮得率为2.29%。  相似文献   

13.
以绿茶提取物——茶粉为原料,研究采用大孔吸附树脂富集酯型儿茶素的工艺。通过比较4种树脂对酯型儿茶素的静态吸附和解吸能力,筛选出最优树脂LX-16,并考察其静态吸附速率曲线、吸附等温线,以及动态吸附与乙醇梯度洗脱等特性。结果表明:LX-16大孔吸附树脂对酯型儿茶素具有良好的吸附选择性,按酯型儿茶素上样量17mg/g树脂上样,通过梯度洗脱,酯型儿茶素产品纯度从7.3%提高到了65.2%,回收率达80%以上。  相似文献   

14.
大孔树脂纯化茶皂素的研究   总被引:1,自引:0,他引:1  
以脱脂油茶饼粕80%乙醇浸提液为原料,考察了不同大孔树脂对茶皂素液的纯化效果,确定用AB-8树脂进行纯化。研究得出较佳吸附条件:上样液中茶皂素浓度34.4mg/mL、吸附温度25℃、吸附时间100min;较佳脱附条件:脱附温度30℃、洗脱液乙醇浓度80%、洗脱液与上样液体积比4:1、脱附时间80min,在此条件下茶皂素的吸附率90.70%、总洗脱率85.47%,产品纯度85%。  相似文献   

15.
冯瑛  李洁  王旭捷  董昕阳  杨晓萍 《食品工业科技》2019,40(18):160-164,176
采用内部沸腾法提取茶多酚,研究解吸剂(乙醇)浓度、解吸时间、解吸剂料液比、提取剂(热水)料液比、提取时间、提取温度等六个因素对茶多酚得率的影响,在单因素实验基础上,设计正交实验,优化茶多酚提取条件。与水提法进行比较,考察两种工艺对儿茶素组分以及抗氧化活性的影响。结果表明,内部沸腾法提取茶多酚的最佳工艺参数为:以50%的乙醇为解吸剂、室温解吸10 min、解吸剂料液比1:6 g/mL;再以水为提取剂、提取剂料液比1:110 g/mL、100℃提取10 min,在此最优工艺条件下茶多酚得率为22.45%±0.11%。与水提法相比,内部沸腾法将茶多酚得率提高了11.53%,高温提取时间缩短近80%,减少了高温对茶多酚活性的破坏,保留了更多的表儿茶素,茶多酚抗氧化活性显著(P<0.05)增强,是一种经济、快速、有效的提取方法,具有较好的工业化生产前景。  相似文献   

16.
Catechins from green tea (Camellia sinensis L.) have received considerable attention due to their beneficial effects on human health, such as antioxidant and anticancer activities. Optimisation of extraction conditions of the catechins from green tea leaves was performed using different solvents (ethanol or distilled water), different extraction methods (ultrasound‐assisted, room temperature or reflux extractions) and various extraction times (0.5–24 h). The optimal extraction conditions were determined using 40% ethanol with ultrasound‐assisted extraction method for 2 h at 40 °C. In addition, two isolation methods for the recovery of catechins from green tea extracts were compared using different solvent combinations (chloroform/ethyl acetate versus ethyl acetate/dichloromethane). The results showed that the ethyl acetate/dichloromethane system could achieve much higher content of catechins than the other isolation approaches, indicating the method that extract catechins first with organic solvent such as ethyl acetate before removing caffeine is much effective than removing caffeine first when organic solvents are used for the recovery of catechins without caffeine from green tea extracts.  相似文献   

17.
采用溶剂法对柠檬桉树皮中的单宁进行提取,用大孔吸附树脂法纯化粗提物,考察了不同纯度单宁的总抗氧化性以及对DPPH·和·OH自由基的清除能力。结果表明,提取柠檬桉树皮中单宁的最佳工艺条件为提取温度60℃、提取时间150 min、乙醇体积分数40%、料液比1:50 g·mL-1,此条件下单宁得率为13.67%。大孔吸附树脂纯化的最佳工艺参数为:以HPD826树脂为吸附树脂,上样流速1.0 mL/min,上样浓度1.33 mg/mL,洗脱流速1.0 mL/min,乙醇洗脱剂体积分数50%;乙酸乙酯萃取物、大孔树脂纯化物、萃余相经大孔树脂纯化物、萃取相经大孔树脂纯化物的纯度分别为39.91%、47.97%、72.43%、76.90%;乙酸乙酯萃取物的总抗氧化性最大,为单宁酸的116.88%;当质量浓度为10 μg/mL时各纯度单宁对DPPH·清除率达到最大,分别为62.53%、65.11%、58.80%、69.37%、79.63%;当浓度为1.0 mg/mL时,对·OH清除率达到最大,分别为83.08%、70.55%、77.53%、65.37%、77.46%。结论表明:乙酸乙酯萃取物、萃取相过大孔树脂纯化物、大孔树脂纯化物和粗提物的抗氧化能力较强,萃余过大孔相树脂纯化物的抗氧化能力较弱。  相似文献   

18.
茶叶浸提液微波辅助萃取过程中溶剂选择的差异   总被引:2,自引:2,他引:0  
研究了绿茶中活性成分儿茶素单体在不同性质的溶剂(甲醇、乙醇、水、乙酸乙酯)下,微波辅助萃取的效率和选择性差异。实验结果发现,酯型儿茶素单体(L-EGCG和L-ECG)用甲醇或乙醇萃取较用水萃取效率高,其他三种简单儿茶素单体(L-EGC,D,L-C,L-EC)则是以纯水作为萃取溶剂萃取效率为佳。乙酸乙酯对儿茶素各单体的浸出量相对水、甲醇和乙醇都大幅减少。适当增加萃取溶剂的离子浓度,会有利于微波辅助萃取效率的提高,但溶剂的离子浓度过大时,会降低儿茶素各单体的浸出量。  相似文献   

19.
Effect of water temperature and ethanol concentration on epimerization and extractability of tea catechins was investigated. The results showed that epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) were partially epimerized into gallocatechin gallate (GCG) and catechin gallate (CG), respectively, when tea catechins extract was heated in water solution at 100 °C for 2 h or dry tea was extracted in water at 100 °C. The epimerization of the catechins was inhibited if the tea catechins extract was heated as solid powder and the dry tea was extracted in 50% (v/v) ethanol or in water at 80 °C or below. When the dry tea was extracted in water, the extractability of catechins increased with the increase of extraction temperature up to 100 °C, but there was no statistically significant difference in total catechins between 80 °C and 100 °C. When teas were extracted using ethanol solutions, the highest extractability of total catechins was obtained in 50% (v/v) ethanol for dry tea and in 75% (v/v) ethanol for fresh tea leaf. In order to reveal the real profiles of tea catechins in teas to be tested, dry tea should be extracted in 50% (v/v) ethanol for 10 min, while fresh tea leaf should be extracted in 75% (v/v) ethanol for 10 min. For commercial extraction, temperature should be controlled at 80 °C if water is used as the solvent. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号