首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
E. Troncoso  F. Pedreschi 《LWT》2009,42(1):187-195
The objective of this research was to study the effect of different processing conditions on physical and sensory properties of potato chips. Potato slices of Desirée and Panda varieties (diameter: 30 mm; thickness: 3 mm) were pre-treated in the following ways: (i) control or unblanched slices without pre-drying; (ii) blanched slices in hot water at 85 °C for 3.5 min and air-dried at 60 °C until a final moisture content of ∼0.6 kg water/kg dry solid; (iii) control slices soaked in a 3.5 kg/m3 sodium metabisulphite solution at 20 °C for 3 min and pH adjusted to 3. Pre-treated slices were fried at 120 and 140 °C under vacuum conditions (5.37 kPa, absolute pressure) and under atmospheric pressure until they reached a final moisture content of ∼1.8 kg water/100 kg (wet basis). An experimental design (3 × 23) was used to analyze the effect of pre-treatment, potato variety, type of frying and frying temperature over the following responses: oil content, instrumental color and texture and sensory evaluation. Vacuum frying increased significantly (p < 0.05) oil content and decreased instrumental color and textural parameters. Sensory attributes, flavor quality and overall quality, were significantly improved using vacuum frying. The higher frying temperature (140 °C) increased ΔE, maximum breaking force, hardness and crispness and decreased L* and b* values. On the other hand, Panda potato variety improved the color of the product. A great improvement on color parameters was obtained using sulphited potato slices instead of the other pre-treatments. Although, the better flavor was obtained for control potato chips, no significant differences were found for overall quality between control and sulphited potato chips. Significant correlations (p < 0.01) between sensory and instrumental responses were found.  相似文献   

2.
Paulo F. Da Silva 《LWT》2008,41(10):1758-1767
Sweet potato, green beans, Tommy Atkins mango, and blue potato were fried in a vacuum frying process at a temperature of 120-130 ± 1°C. Before frying, green beans and mango slices were soaked in a 50% maltodextrine 0.15% citric acid solution. The products were also fried in a traditional (atmospheric pressure) fryer at 160-165 ± 1°C for 4 min. A 30-member consumer panel rated the sensory quality of both types of fried snacks using a 1-9 hedonic scale. Compared with traditional frying, oil content of vacuum-fried sweet-potato chips and green beans was 24% and 16% lower, respectively. Blue potato and mango chips had 6% and 5% more oil, respectively, than the traditional-fried samples. Anthocyanin (mg/100 g d.b.) of vacuum-fried blue potato chips was 60% higher. Final total carotenoids (mg/g d.b.) were higher by 18% for green beans, 19% for mango chips, and by 51% for sweet-potato chips. Sensory panelists overwhelmingly preferred (p < 0.05) the vacuum-fried products for color, texture, taste, and overall quality. Most of the products retained or accentuated their original colors when fried under vacuum. The traditional-fried products showed excessive darkening and scorching. These results support the applicability of vacuum frying technology to provide high-quality fruit and vegetable snacks.  相似文献   

3.
Recent consumer trends towards healthier and low fat products have had a significant impact on the snack industry. The objective of this study was to examine the most important quality parameters of vacuum and atmospheric fried carrot slices in order to identify the specific advantages of vacuum technology. Said parameters include oil uptake, colour changes, and trans α and β-carotene degradation. Equivalent thermal driving forces were used (ΔT = 60 °C and 80 °C) to compare the processes, maintaining a constant difference in temperature between the oil and the boiling point of water at the working pressure. The results showed that vacuum frying can reduce oil content by nearly 50% (d.b.) and preserve approximately 90% of trans α-carotene and 86% of trans β-carotene. This process also allowed for the raw carrot colour to be preserved, which was reflected by good correlations between a∗ and trans β-carotene content, b∗ and trans α-carotene content, and hue and total carotenoid content.  相似文献   

4.
Consumers look for products that contribute to their wellness and health, however, even health-conscious consumers are not willing to sacrifice organoleptic properties, and intense full-flavor snacks remain an important trend. The objective of this study was to examine most important quality parameters of vacuum (1.92 inHg) and atmospheric-fried carrot, potato, and apple slices to determine specific advantages of vacuum technology. Slices were fried using equivalent thermal driving forces, maintaining a constant difference between oil temperature and the boiling point of water at the working pressure (ΔT = 60 and 80 °C). This resulted in frying temperatures of 160 and 180 °C, and 98 and 118 °C, for atmospheric and vacuum frying, respectively. Vacuum-fried carrot and potato chips absorbed about 50% less oil than atmospheric-fried chips, whereas vacuum-fried apple chips reduced oil absorption by 25%. Total carotenoids and ascorbic acid (AA) were greatly preserved during vacuum frying. Carrot chips vacuum fried at 98 °C retained about 90% of total carotenoids, whereas potato and apple slices vacuum fried at 98 °C, preserved around 95% of their initial AA content. Interestingly, results showed that the antioxidant capacity of chips may be related to both the presence of natural antioxidants and brown pigments developed at elevated temperatures. PRACTICAL APPLICATION: A way to reduce detrimental effects of deep-fat frying is through operating-pressure reduction, the essence behind vacuum deep-fat frying. In this way, it is possible to remove product moisture at a low temperature in a low-oxygen environment. The objective of this research was to study the effect of oil temperature reduction when vacuum frying traditional (potatoes) and nontraditional products (carrots and apples) on most important quality attributes (vitamins, color, and oil uptake). Results are promising and show that vacuum frying can be an alternative to produce nutritious and novel snacks with desired quality attributes, since vitamins and color were greatly preserved and oil absorption could be substantially reduced.  相似文献   

5.
The objective of this research was to determine the kinetics of water loss and oil uptake during frying of pre-treated potato slices under vacuum and atmospheric pressure. Potato slices (diameter: 30 mm; width: 3 mm) were pre-treated in the following ways: (i) raw potato slices “control”; (ii) control slices were blanched in hot water at 85 °C for 3.5 min; (iii) blanched slices were dried in hot air until reaching a moisture content of ∼0.6 g water/g dry basis. The slices were fried under vacuum (5.37 kPa, absolute pressure, at 120, 130 and 140 °C) and atmospheric conditions (at 180 °C). Two models based on the Fick's law were used to describe water loss: (i) with a constant effective diffusive coefficient; and (ii) with a variable effective diffusive coefficient. Oil uptake data were fitted to an empirical model, with a linear behavior for short times whereas the model was time independent for long times. The variable diffusivity model better fitted experimental water loss, giving values of effective diffusivity between 4.73 × 10−9 and 1.80 × 10−8 m2/s. The proposed model for the study of the kinetics of oil uptake fitted the experimental data properly. Control and blanched vacuum fried potato chips increased their final oil contents to 57.1% and 75.4% respectively, when compared with those fried at atmospheric pressure. However, the oil absorption of dried vacuum fried potato chips diminished by ∼30%.  相似文献   

6.
探究常压煎炸和真空煎炸对中国对虾理化性质和感官品质的影响。测定了不同煎炸温度下两种煎炸方式对中国对虾的水分含量、含油量、色泽、虾青素含量和感官品质的影响。结果表明:随着煎炸温度的升高,两种煎炸方式下中国对虾的水分含量均降低,含油量均增加,但真空煎炸下中国对虾的变化幅度较低;两种煎炸方式下中国对虾的虾青素含量均随着煎炸温度的升高呈现先增加后减少的趋势;相同热驱动力下,真空煎炸的中国对虾的色泽、虾青素含量和感官品质均优于常压煎炸的。相比于常压煎炸,真空煎炸的中国对虾品质更佳。  相似文献   

7.
Effects of vacuum frying on structural changes of bananas   总被引:1,自引:0,他引:1  
Effects of oil temperature, frying time, and ripeness on dimensional changes of vacuum fried bananas were studied. Banana slices with cross section diameters of 25-30 mm and a thickness of 3.5-4.5 mm were fried at temperatures of 100, 110, and 120 °C and 8 kPa for 20 min to determine which temperature produced the highest degree of expansion. Using this temperature, the width and thickness of the product were measured at 0, 5, 10, 15, and 20 min to model the dimensional changes as a function of moisture ratio. Sensory evaluation was conducted using a 7-point hedonic scale test to determine the effect of ripeness on acceptability of the product. Scanning electron microscopy (SEM) was used to analyze the structure of the vacuum fried bananas.The experimental results under this vacuum pressure revealed that frying temperature of 110 °C on bananas at the second day of ripeness yielded the highest volume expansion. Sensory evaluations did not unveil any significant difference (p > 0.05) in acceptability of the products based on ripeness. Results from SEM exhibited, as a function of frying time, a dramatic increase in the pore size of the bananas, while the Heywood shape factor indicated an overall increase in the product volume.  相似文献   

8.
Vacuum frying was explored to cook donuts and compared to the conventional atmospheric frying. A temperature of 190°C was used for atmospheric frying. Three vacuum levels (3, 6, and 9 kPa vacuum) with three temperature levels (150, 165, and 180°C) were used for vacuum frying. The effects of initial moisture content (IMC), vacuum level and frying temperature on physicochemical properties, such as moisture loss, oil absorption, and quality were investigated. The properties of fried donuts were significantly affected by IMC. Under vacuum frying, volume and total color changes were affected by frying temperature; and oil uptake was affected by vacuum and frying temperature. Frying temperature and vacuum were not directly related to the final moisture content (MC) of donuts. There was no relationship between MC and fat content of donuts. Donut texture was directly related to the vacuum and frying temperature.  相似文献   

9.
Physico-chemical properties of fried rice crackers were studied as a function of fish powder content, processing conditions, frying temperature and frying time. The results showed that addition of fish powder content at 5, 10 and 15 g/100 g reduced the oil uptake by approximately 10, 14 and 22 g/100 g (db), respectively in comparison to the control without fish powder. The deep fried rice crackers mixed with fish powder tended to be lower in hardness, lower in expansion ratio and higher in bulk density in comparison to the control sample. The color parameter, L of fried rice crackers decreased with increase in fish powder content. In contrast, a and b values increased with increase in fish powder content. The moisture content of deep fried rice crackers decreased with increase in frying temperature and frying time. The oil uptake in fried rice crackers increased with increase in frying time but decreased with increase in frying temperature. With increase in frying temperature and time, the texture of rice crackers became harder, the bulk density increased, and the expansion ratio decreased. The optimum conditions resulting in desirable physico-chemical properties and minimum oil uptake were rice crackers with fish powder content of 9 g/100 g, fried at a temperature of 220 °C for 60 s.  相似文献   

10.
The effects of pretreatment and processing conditions on the quality of vacuum fried apple chips were studied. As blanched apple slices were pretreated by immersing in fructose solution and freezing prior to vacuum frying, more uniform porosity was observed on the surface (or cross-section) of apple chips as examined by scanning electron microscopy (SEM). During vacuum frying, the moisture content and breaking force of apple chips decreased with increasing frying temperature and time while the oil content increased. The L values of fried apple chips decreased apparently with increasing frying temperature. However, when apple slices were fried at 100°C for up to 20 min, both a and b values increased rapidly. Statistical analysis with the central composite rotatable design showed that the moisture content, oil content, color, and breaking force of apple chips were significantly (P⩽0.05) correlated with concentration of immersing sugar solution, frying temperature and frying time. Based on surface responses and contour plots, optimum conditions were: vacuum frying temperature of 100–110°C, vacuum frying time of 20–25 min, and immersing fructose concentration of 30–40%.  相似文献   

11.

Vacuum frying was compared with atmospheric frying in the development of wheat starch and gluten based snacks in terms of oil uptake, texture, expansion, and color development. The comparison was based on the concept of equivalent thermal driving force (ETDF) (i.e., keeping a constant difference between the oil temperature and boiling point of water at the working pressure). Vacuum fried snacks were observed to absorb lower oil content at all ETDFs and as low as 27% less of atmospherically fried samples and lighter in color. A very strong relationship existed between texture and oil content on one hand; and expansion and oil content on the other hand for fried matrices from both technologies. SEM was used in validating the result. Vacuum frying can be used for the development of acceptable fabricated fried snacks from wheat starch and gluten with lower oil content and acceptable textural and color properties.

  相似文献   

12.
The present work deals with the kinetics of partitioning of oil on the surface as well as in the structure during holding of fried potato slices at elevated temperatures (100, 120, 140, 160 and 180 °C) compared with controls. After frying, the oil present on the surface migrates into structure due to condensation of vapor inside the product resulting in the creation of a vacuum. However, the oil present on the surface need not migrate into the structure, if the fried product is held at elevated temperatures. Further, the excess oil, which did not migrate into structure, can be removed by absorbent paper. The oil partition coefficient, defined as the ratio of oil present on the surface to the structure, during holding of samples at 180 °C was found to be 3.06, whereas the oil partition coefficient of the sample held at ambient temperature was 0.53, which indicates the availability of oil on the surface of fried product held at elevated temperature. The mass transfer coefficient of oil corroborated with the above finding. The holding of deep-fat fried product at 180 °C followed by the removal of oil from the surface using high absorbent paper reduced the oil content of the final product from 0.440 to 0.332 kg of oil/kg dry solids.  相似文献   

13.
Vacuum frying (1.33 kPa), with the aid of a de-oiling mechanism, was used to produce low-fat sweet potato chips. The kinetics of oil absorption and oil distribution in the chips (total, internal, and surface oil content) was studied so that effectiveness of the de-oiling system could be established. Product quality attributes (PQAs) such as moisture content, oil content, diameter shrinkage, and thickness expansion, as well as, color, texture, bulk density, true density, and porosity of chips fried at different temperatures (120, 130, and 140 °C) was performed to evaluate the effect of process temperature on the product.  相似文献   

14.
Optimization of processing conditions (temperature 122 to 136°C, vacuum pressure 9.91 to 19.91 cmHg, and frying time 3 to 9 min) during vacuum frying of plantain chips was investigated using a Box-Behnken experimental design with response surface methodology (RSM). Models for various responses were developed and optimized frying conditions using numerical solutions were established. Optimized vacuum fried samples were compared with atmospheric fried samples based on the concept of equivalent thermal driving force (ETDF). Frying parameters had significant (p<0.05) effects on the moisture content, texture, and color with a coefficient of determination (R 2) for quadratic model responses varying between 0.53 and 0.99. Optimum vacuum frying conditions for plantain chips were a frying temperature of 133°C, vacuum pressure of 9.91 cmHg, and frying time of 6 min based on desirability concepts. Vacuum fried plantain chips had more acceptable sensory properties, based on ETDF values, than atmospheric fried samples.  相似文献   

15.
Oil uptake in fresh, blanched and, blanched and dried potato slices was studied during frying. Potato slices blanched in hot water (85 °C, 3.5 min) and potato slices blanched (85 °C, 3.5 min) and then dried until to a moisture content of ∼60 g/100 g (wet basis) were deep fried in sunflower oil at 120, 150 and 180 °C. A control treatment consisted of unblanched potato slices without the pre-drying treatment (fresh samples). It was studied applying two empirical kinetic models in order to fit the oil uptake during frying: (i) a first order model; (ii) a proposed model, with a linear time behavior for short times, while time independent for long times. Oil uptake was high even for short frying times at the different temperatures tested suggesting that oil wetting is an important mechanism of oil uptake during frying. For control slices, oil uptake increased approximately by 32% as the frying temperature decreased from 180 to 120 °C at moisture contents ?1 g water/g dry solid. No apparent effect of frying temperature in oil uptake was observed at moisture contents ?0.5 g water/g dry solid in fried slices previously blanched and dried. The two kinetic models studied fitted properly the values of oil uptake during frying, with similar correlation coefficient r2.  相似文献   

16.
Consumers like fried snacks, and taste, color, and texture are key aspects in their preference. However, during frying of foods some toxic compounds, such as furan and acrylamide, are produced. The objective of this work was to mitigate furan and acrylamide formation in potato chips, without affecting their main quality attributes, by using vacuum frying. To accomplish this purpose, potato slices were fried at atmospheric (P abs 29.92 inHg) and vacuum conditions (P abs 3.00 inHg), using equivalent thermal driving forces (T water boiling point ? T oil = 50, 60, or 70 °C). Furan and acrylamide concentration, oil content, and texture of both atmospheric and vacuum-fried samples were determined. Vacuum-fried potato chips showed reductions of about 81, 58, and 28% of furan, acrylamide, and oil content, respectively, when compared to their atmospheric counterparts. Additionally, the texture was not affected (p > 0.05) by changes in the pressure during frying. Results clearly showed that vacuum frying is an effective technology for furan and acrylamide mitigation in potato chips, since it reduces the content of both contaminants and preserves the quality attributes of fried snacks.  相似文献   

17.
The objective of this study is to analyze the influence of temperature and reduced pressure on the convective heat transfer coefficient, h, during frying of products with different area/volume ratio. h was determined from surface temperature and moisture loss experimental data during frying of potato cylinders and “churros”, at different oil temperatures (100, 120 and 140 °C) and moderate vacuum (19.5–25.9 kPa). The results obtained during vacuum frying were compared with those obtained at atmospheric pressure, both for the same oil temperature (140 °C) and for the same thermal gradient (40 °C). During frying, h changes considerably, reaching a maximum between 700–1600 Wm−2 K−1 in vacuum frying and 800–2000 Wm−2 K−1 in atmospheric frying. To quantify the effect of oil temperature, pressure and size of the product on h, a parameter called “bubbling efficiency”, BE, was defined. BE relates the bubble departure radius and the area/volume ratio of the product. An equation (the derivative of the Gompertz function) was proposed to estimate the mean heat convective coefficients for each frying condition as a function of BE (R2 = 0.957). The relation between h and BE shows a maximum corresponding to an optimal bubbling pattern. Most of the vacuum frying settings are outside this optimum, being affected by the insulation effect of bubbles covering the surface.  相似文献   

18.
Vacuum frying (VF) is a process developed at a pressure lower than atmospheric pressure, in which lower temperatures are employed to remove moisture from the food and reduce the oil content in the final product. Diverse studies have been published for VF or assisted with microwave and ultrasound, facing the challenges of accomplishing the physical and sensory properties appreciated in fried products. The studied matrices under VF include mainly vegetable origin foods (apple, banana, carrot, donuts, kiwi, mushroom, pea, pear, potato and sweet potato) and some animal origin products (chicken nuggets, fish fillets and surimi products). This review aimed to show recent and relevant findings of the application of VF, analysing both the effects on the frying medium and the impact on the fried foods. The inclusion of microwave and ultrasound technologies aids in the obtention of high-quality products in terms of sensory and textural attributes, oil content as well as reduced oil degradation. This technique may provide safer and stable fried foods with lower oil content aiding in improving the diet of consumers and reducing production costs.  相似文献   

19.
Response surface methodology was used to investigate the effects of frying temperature, time and maltodextrin (MD) levels on the moisture, oil and beta‐carotene contents of the vacuum‐fried apricot slices. Based on the results, the moisture content of vacuum‐fried apricot slices decreases with increasing frying temperature and frying time. Generally, the oil content of vacuum‐fried apricot slices decreases with decreasing frying temperature and frying time. The beta‐carotene content of vacuum‐fried apricot slices increases with increasing frying temperature. But the trend of increase in the beta‐carotene content of the product with frying temperature was higher at lower MD level. When processing vacuum‐fried apricot slices, a frying temperature of 100 °C, frying time of 72.5 min and an MD level of 70% must be used to achieve a product of acceptable moisture, oil and beta‐carotene contents.  相似文献   

20.
真空油炸胡萝卜脆片基本特性的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
真空油炸技术可用于生产高品质的果蔬脆片.主要研究了油炸温度和真空度对胡萝卜片水分质量分数、脂肪质量分数、色泽及质构的影响.试验表明:随着油炸温度和真空度的升高,其干燥和脂肪吸收速度相应提高,且两者呈一定的相关性.统计分析可知:油炸温度和真空度并不显著性影响脆片的白度(L)、红度(a)、黄度(b)值(P〉0.05);对于脆片的破碎力而言,真空度具有显著性影响(P〈O.05),而油炸温度不具有显著性影响(P〉0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号