首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oil uptake in fresh, blanched and, blanched and dried potato slices was studied during frying. Potato slices blanched in hot water (85 °C, 3.5 min) and potato slices blanched (85 °C, 3.5 min) and then dried until to a moisture content of ∼60 g/100 g (wet basis) were deep fried in sunflower oil at 120, 150 and 180 °C. A control treatment consisted of unblanched potato slices without the pre-drying treatment (fresh samples). It was studied applying two empirical kinetic models in order to fit the oil uptake during frying: (i) a first order model; (ii) a proposed model, with a linear time behavior for short times, while time independent for long times. Oil uptake was high even for short frying times at the different temperatures tested suggesting that oil wetting is an important mechanism of oil uptake during frying. For control slices, oil uptake increased approximately by 32% as the frying temperature decreased from 180 to 120 °C at moisture contents ?1 g water/g dry solid. No apparent effect of frying temperature in oil uptake was observed at moisture contents ?0.5 g water/g dry solid in fried slices previously blanched and dried. The two kinetic models studied fitted properly the values of oil uptake during frying, with similar correlation coefficient r2.  相似文献   

2.
E. Troncoso  F. Pedreschi 《LWT》2009,42(1):187-195
The objective of this research was to study the effect of different processing conditions on physical and sensory properties of potato chips. Potato slices of Desirée and Panda varieties (diameter: 30 mm; thickness: 3 mm) were pre-treated in the following ways: (i) control or unblanched slices without pre-drying; (ii) blanched slices in hot water at 85 °C for 3.5 min and air-dried at 60 °C until a final moisture content of ∼0.6 kg water/kg dry solid; (iii) control slices soaked in a 3.5 kg/m3 sodium metabisulphite solution at 20 °C for 3 min and pH adjusted to 3. Pre-treated slices were fried at 120 and 140 °C under vacuum conditions (5.37 kPa, absolute pressure) and under atmospheric pressure until they reached a final moisture content of ∼1.8 kg water/100 kg (wet basis). An experimental design (3 × 23) was used to analyze the effect of pre-treatment, potato variety, type of frying and frying temperature over the following responses: oil content, instrumental color and texture and sensory evaluation. Vacuum frying increased significantly (p < 0.05) oil content and decreased instrumental color and textural parameters. Sensory attributes, flavor quality and overall quality, were significantly improved using vacuum frying. The higher frying temperature (140 °C) increased ΔE, maximum breaking force, hardness and crispness and decreased L* and b* values. On the other hand, Panda potato variety improved the color of the product. A great improvement on color parameters was obtained using sulphited potato slices instead of the other pre-treatments. Although, the better flavor was obtained for control potato chips, no significant differences were found for overall quality between control and sulphited potato chips. Significant correlations (p < 0.01) between sensory and instrumental responses were found.  相似文献   

3.
Reduction of acrylamide formation in potato slices during frying   总被引:1,自引:0,他引:1  
Franco Pedreschi  Karl Kaack 《LWT》2004,37(6):679-685
Reduction of acrylamide formation in potato chips was investigated in relation to frying temperature and three treatments before frying. Potato slices (Tivoli variety, diameter: 37 mm, width: 2.2 mm) were fried at 150°C, 170°C and 190°C until reaching moisture contents of ∼1.7 g water/100 g (total basis). Prior to frying, potato slices were treated in one of the following ways: (i) soaked in distilled water for 0 min (control), 40 min and 90 min; (ii) blanched in hot water at six different time-temperature combinations (50°C for 30 and 70 min; 70°C for 8 and 40 min; 90°C for 2 and 9 min); (iii) immersed in citric acid solutions of different concentrations (10 and 20 g/l) for half an hour. Glucose and asparagine concentration was determined in potato slices before frying, whereas acrylamide content was determined in the resultant fried potato chips. Glucose content decreased in ∼32% in potato slices soaked 90 min in distilled water. Soaked slices showed on average a reduction of acrylamide formation of 27%, 38% and 20% at 150°C, 170°C and 190°C, respectively, when they were compared against the control. Blanching reduced on average 76% and 68% of the glucose and asparagine content compared to the control. Potato slices blanched at 50°C for 70 min surprisingly had a very low acrylamide content (28 μm/kg) even when they were fried at 190°C. Potato immersion in citric acid solutions of 10 and 20 g/l reduced acrylamide formation by almost 70% for slices fried at 150°C. For the three pre-treatments studied, acrylamide formation increased dramatically as the frying temperature increased from 150°C to 190°C.  相似文献   

4.
Paulo F. Da Silva 《LWT》2008,41(10):1758-1767
Sweet potato, green beans, Tommy Atkins mango, and blue potato were fried in a vacuum frying process at a temperature of 120-130 ± 1°C. Before frying, green beans and mango slices were soaked in a 50% maltodextrine 0.15% citric acid solution. The products were also fried in a traditional (atmospheric pressure) fryer at 160-165 ± 1°C for 4 min. A 30-member consumer panel rated the sensory quality of both types of fried snacks using a 1-9 hedonic scale. Compared with traditional frying, oil content of vacuum-fried sweet-potato chips and green beans was 24% and 16% lower, respectively. Blue potato and mango chips had 6% and 5% more oil, respectively, than the traditional-fried samples. Anthocyanin (mg/100 g d.b.) of vacuum-fried blue potato chips was 60% higher. Final total carotenoids (mg/g d.b.) were higher by 18% for green beans, 19% for mango chips, and by 51% for sweet-potato chips. Sensory panelists overwhelmingly preferred (p < 0.05) the vacuum-fried products for color, texture, taste, and overall quality. Most of the products retained or accentuated their original colors when fried under vacuum. The traditional-fried products showed excessive darkening and scorching. These results support the applicability of vacuum frying technology to provide high-quality fruit and vegetable snacks.  相似文献   

5.
Vacuum deep-fat frying is a new technology that can be used to improve quality attributes of fried food because of the low temperatures employed and minimal exposure to oxygen. In this paper atmospheric and vacuum frying of apple slices were compared, in terms of oil uptake, moisture loss and color development. In addition, some apple slices were pre-dried (up to 64% w.b.) before vacuum frying to determine the overall effect. To carry out appropriate comparisons between both technologies equivalent thermal driving forces were used in both processes (ΔT = 40, 50, 60 °C), keeping a constant difference between the oil temperature and the boiling point of water at the working pressure. Vacuum frying was shown to be a promising technique that can be used to reduce oil content in fried apple slices while preserving the color of the product. Particularly, drying prior to vacuum frying was shown to give the best results. For instance, when using a driving force of ΔT = 60 °C, pre-dried vacuum fried slices absorbed less than 50% of the oil absorbed by atmospheric fried ones. Interestingly, a strong relationship between water loss and oil content was observed in both technologies, allowing the extension of observations that have been made for atmospheric frying.  相似文献   

6.
Oil uptake and texture development in fried potato slices   总被引:2,自引:0,他引:2  
The objective of this work was to study oil absorption and the kinetics of texture development of fried potato slices during frying. Prior to frying, potato slices were blanched in hot water at 85 °C for 3.5 min. Unblanched slices were used as the control. Control and blanched potato slices (Panda variety, diameter: 37 mm, width: 2.2 mm) were fried at 120, 150 and 180 °C until reaching moisture contents of 1.8% (total basis) and their texture and oil content were measured periodically. Oil uptake was higher in 15% for blanched samples than for control samples after 20 s of frying. Besides, the higher the frying temperature, the lower the oil absorption in control samples. Textural changes in fried potato slices were followed by the parameter maximum force (MF) extracted from the force vs. distance curves corresponding to different sampling times. Normalized maximum force (MF*) was used in modeling textural changes in the potato slices during frying in both the initial tissue softening process and the later crust development process. Higher temperatures accelerated these processes; however neither the temperature nor the pre-treatment had a significant effect (P > 0.05) over the final texture of the fried potato chips.  相似文献   

7.
Pairs of potato slices were blanched, soaked in a NaCl solution or water and fried. The originally adjoining faces of the chips were analysed for average L*a*b* color by digital photography and image analysis.Stepwise increases in blanching temperature (60, 65, 70, 75, 80 °C/5 min) gave rise to gradually darker chips above 65 °C, by a total of 9L* units (P=0.001). Slices soaked after blanching in a 3% NaCl solution for 5 min were consistently paler by 5L* units (P=0.0054) than those soaked in water only.Change in the concentration range 0.6-9% NaCl was found using one-tailed paired t-test, subsequent to blanching at 70 °C/5 min (P=0.0125).  相似文献   

8.
Vacuum frying (1.33 kPa), with the aid of a de-oiling mechanism, was used to produce low-fat potato chips.The kinetics of oil absorption and oil distribution in the potato chips was studied so that effectiveness of the de-oiling system could be established. Non-linear regression was used to fit the experimental data to the models used to describe oil absorption in potato chips with time.Moisture content, oil content, microstructure, diameter and thickness expansion, bulk density, true density, and porosity of chips fried at different temperatures (120, 130, and 140 °C) was performed to evaluate the effect of process temperature on the product. The convective heat transfer coefficient at the oil-chip interface was determined for the same temperature range.The final oil content of the potato chips was 0.072 ± 0.004, 0.062 ± 0.003, and 0.059 ± 0.003 g/g solid for frying temperatures of 120, 130, and 140 °C, respectively. These values are lower (80-87% less) than those found in the not de-oiled potato chips, which indicates that the de-oiling mechanism is crucial in vacuum frying processing. A significant difference (P < 0.05) was observed in oil content and oil distribution within temperatures. The rate of change in product quality attributes was greatly affected by temperature; however, the final values of moisture content, bulk density, true density, porosity, diameter shrinkage, and thickness expansion were not affected by temperature.During vacuum frying, the convective heat transfer coefficient changed considerably as frying progressed; moreover, it increased with temperature reaching a maximum between 2200 and 2650 W/m2 K depending on frying temperature.  相似文献   

9.
The objective of this work was to study the kinetics of browning during deep-fat frying of blanched and unblanched potato chips by using the dynamic method and to find a relationship between browning development and acrylamide formation. Prior to frying, potato slices were blanched in hot water at 85 °C for 3.5 min. Unblanched slices were used as the control. Control and blanched potato slices (Panda variety, diameter: 37 mm, width: 2.2 mm) were fried at 120, 150 and 180 °C until reaching moisture contents of ∼1.8% (total basis) and their acrylamide content and final color were measured. Color changes were recorded at different sampling times during frying at the three mentioned temperatures using the chromatic redness parameter a1. Experimental data of surface temperature, moisture content and color change in potato chips during frying were fit to empirical relationships, with correlation coefficients greater than 90%. A first-order rate equation was used to model the kinetics of color change. In all cases, the Arrhenius activation energy decreases alongside with decreasing chip moisture content. Blanching reduced acrylamide formation in potato chips in ∼64% (average value) in comparison with control chips at the three oil temperatures tested. For the two pre-treatments studied, average acrylamide content increased ∼58 times as the frying temperature increased from 120 to 180 °C. There was a linear correlation between acrylamide content of potato chips and their color represented by the redness component a1 in the range of the temperatures studied.  相似文献   

10.
In this research acrylamide reduction in potato chips was investigated in relation to blanching and asparaginase immersion treatments before final frying. Potatoes slices (Verdi variety, diameter: 40 mm, thickness: 2.0 mm) were fried at 170 °C for 5 min (final moisture content of ∼2.0 g/100 g). Prior to frying, potato slices were treated in one of the following ways: (i) Rinsing in distilled water (control I); (ii) Rinsing in distilled water plus blanching in hot water at 85 °C for 3.5 min; (iii) Rinsing in distilled water plus immersion in an asparaginase solution (10000 ASNU/L) at 50 °C for 20 min; (iv) Rinsing in distilled water plus blanching in hot water at 85 °C for 3.5 min plus immersion in an asparaginase solution (10000 ASNU/L) at 50 °C for 20 min; (v) Rinsing in distilled water plus blanching in hot water at 85 °C for 3.5 min plus immersion in distilled water at 50 °C for 20 min (control II). Blanching in hot water (ii) was almost as effective as asparaginase potato immersion (iii) in order to diminish acrylamide formation in potato chips (acrylamide reduction was ∼17% of the initial acrylamide concentration). When potato slices were blanched before asparaginase immersion, the acrylamide content of the resultant potato chips was reduced considerably by almost 90%. We have demonstrated that blanching of potato slices plus asparaginase treatment is an effective combination for acrylamide mitigation during frying. It seems to be that blanching provokes changes in the microstructure of potato tissue leading to an easier and more effective diffusion of asparaginase.  相似文献   

11.
Demand for safe and nutritionally rich fried products is gaining a momentum among consumers, leading to the increased consumption of vacuum fried products. The impact of vacuum frying (VF)(110 °C, 40 kPa) on chemical composition of food, fatty acid profile, microstructure, oxidative stability and sensory attributes was assessed and differentiated with that of atmospheric frying(AF) (180 °C). The potato slices were fried in mustard and soyabean oil used repetitively for 25 h. The oil content of VF potato chips was lower (15.18%) than AF chips (18.98%), however water loss in AF chips was higher than VF chips by 1.63-fold. VF significantly prevented the PUFA degradation, minimizes transfatty acid (TFA) formation and maintain a low C18:2/C16:0 ratio as compared to AF. VF Chips fried in soyabean oil show an increase in TFA content from 2.15 to 2.63% and a decrease in PUFA from 51.57 to 45.16% as compared to AF chips where TFA content increased from 2.15 to 3.72% and PUFA shows a higher reduction from 51.57 to 37.69% at the end of 25 h of frying. This indicate that in AF, oil is safe for use upto 10 cycles of frying, while as in VF, the same oil can be used for upto 40 cycles of frying without quality deteoriation. Sensorial analysis revealed that VF chips retain a better colour, taste and flavour but were less crispy than that of AF chips. These findings validate the application of vacuum frying technology for the production of high-quality foods with lesser degradation of frying oil.Industrial relevanceFood manufacturers are now impelled by the health-conscious consumer base for the production of healthy food products. The toxic effect of foods fried in degraded oils on human health is now widely known and thus the production of safe fried foods is the need of hour globally. In this context, vacuum frying is the most feasible approach for the production of quality fried products retaining the natural colour, flavour, sensory and nutritional properties better than that of atmospheric frying. Vacuum frying causes the least degradation of fatty acid of the frying oil and the fried potatoes, producing healthy potato chips. Therefore, the oil used for vacuum frying have a greater shelf life and oxidative stability than atmospheric frying. However, the higher installation cost of vacuum fryer still limits its use in the street fried food market, where degradation of oil is more likely. Thus, for its widespread commercialisation in developing countries, steps should be taken both by government and manufacturing companies to reduce the installation costs.  相似文献   

12.
Acrylamide formation in French fries was investigated in relation to blanching and asparaginase soaking treatments before final frying. Par-fried potatoes of Bintje variety were prepared by cutting strips (0.8 × 0.8 × 5 cm) which were blanched at 75 °C for 10 min. Unblanched strips were used as the control. Control or blanched strips were then dried at 85 °C for 10 min and immediately partially fried at 175 °C for 1 min. Finally, frozen par-fried potatoes were fried at 175 °C for 3 min to obtain French fries. Pre-drying of raw or blanched potato strips did not generate acrylamide formation as expected. Partial frying of pre-dried control potato strips generated 370 μg/kg of acrylamide and the final frying determined French fries with 2075 μg/kg of acrylamide. When control potato strips were treated with a 10000 ASNU/l asparaginase solution at 40 °C for 20 min, the acrylamide formation in French fries was reduced by 30%. When blanched potato strips were treated in the same way, the produced French fries have 60% less acrylamide content than blanched strips without the enzyme treatment. Soaking of blanched potato strips (75 °C, 10 min) in an 10000 ASNU/l asparaginase solution at 40 °C for 20 min is an effective way to reduce acrylamide formation after frying by reducing the amount of one of its important precursors such as asparagine.  相似文献   

13.
Using hydrocolloids to decrease oil absorption in banana chips   总被引:1,自引:0,他引:1  
The aim of this research was to investigate the influence of hydrocolloids (alginate, CMC and pectin) on the oil absorption in fried banana chips. The control banana chips (no hydrocolloid treatment) had oil content as high as 40 g/100 g sample, whereas the sample blanched in 0.5 g CaCl2/100 ml water and following with immersion in 1 g alginate/100 ml water exhibited a small decrease of oil uptake (p ≤ 0.05) to 38 g/100 g sample. The others which treated with 0.5 g CaCl2/100 ml and 1 g pectin/100 ml water, and with 0.25 g CaCl2/100 ml water and 1 g CMC/100 ml water absorbed much less oil (p ≤ 0.05), approximately 23 g/100 g sample. Besides, pectin-treated chips had higher sensory scores in all attributed than CMC-treated sample. These resulted showed that pectin was the most effective hydrocolloid for low fat fried banana chip production. Scanning electron microscope photographs indicted that coating banana chips with pectin was effective in protecting the cellular structure of the banana tissue from damage during deep-fat frying.  相似文献   

14.
The effect of the hydrocolloid coatings (gellan gum and guar gum) of a food matrix on the heat transfer during a frying process was investigated and correlated with the oil uptake. While the potato strips coated with the hydrocolloid solutions were fried at 170 °C, the hydrocolloid coatings significantly reduced the heat transfer coefficients as well as oil uptake which became more apparent at higher concentrations. Thus, the oil uptake was found to have a good polynomial correlation (R2 > 0.99) with heat transfer coefficients, suggesting that a rapid heat transfer led to an increase in the oil content of the fried samples.  相似文献   

15.
Consumers look for products that contribute to their wellness and health, however, even health-conscious consumers are not willing to sacrifice organoleptic properties, and intense full-flavor snacks remain an important trend. The objective of this study was to examine most important quality parameters of vacuum (1.92 inHg) and atmospheric-fried carrot, potato, and apple slices to determine specific advantages of vacuum technology. Slices were fried using equivalent thermal driving forces, maintaining a constant difference between oil temperature and the boiling point of water at the working pressure (ΔT = 60 and 80 °C). This resulted in frying temperatures of 160 and 180 °C, and 98 and 118 °C, for atmospheric and vacuum frying, respectively. Vacuum-fried carrot and potato chips absorbed about 50% less oil than atmospheric-fried chips, whereas vacuum-fried apple chips reduced oil absorption by 25%. Total carotenoids and ascorbic acid (AA) were greatly preserved during vacuum frying. Carrot chips vacuum fried at 98 °C retained about 90% of total carotenoids, whereas potato and apple slices vacuum fried at 98 °C, preserved around 95% of their initial AA content. Interestingly, results showed that the antioxidant capacity of chips may be related to both the presence of natural antioxidants and brown pigments developed at elevated temperatures. PRACTICAL APPLICATION: A way to reduce detrimental effects of deep-fat frying is through operating-pressure reduction, the essence behind vacuum deep-fat frying. In this way, it is possible to remove product moisture at a low temperature in a low-oxygen environment. The objective of this research was to study the effect of oil temperature reduction when vacuum frying traditional (potatoes) and nontraditional products (carrots and apples) on most important quality attributes (vitamins, color, and oil uptake). Results are promising and show that vacuum frying can be an alternative to produce nutritious and novel snacks with desired quality attributes, since vitamins and color were greatly preserved and oil absorption could be substantially reduced.  相似文献   

16.
Consumers like fried snacks, and taste, color, and texture are key aspects in their preference. However, during frying of foods some toxic compounds, such as furan and acrylamide, are produced. The objective of this work was to mitigate furan and acrylamide formation in potato chips, without affecting their main quality attributes, by using vacuum frying. To accomplish this purpose, potato slices were fried at atmospheric (P abs 29.92 inHg) and vacuum conditions (P abs 3.00 inHg), using equivalent thermal driving forces (T water boiling point ? T oil = 50, 60, or 70 °C). Furan and acrylamide concentration, oil content, and texture of both atmospheric and vacuum-fried samples were determined. Vacuum-fried potato chips showed reductions of about 81, 58, and 28% of furan, acrylamide, and oil content, respectively, when compared to their atmospheric counterparts. Additionally, the texture was not affected (p > 0.05) by changes in the pressure during frying. Results clearly showed that vacuum frying is an effective technology for furan and acrylamide mitigation in potato chips, since it reduces the content of both contaminants and preserves the quality attributes of fried snacks.  相似文献   

17.
Characterization of microwave vacuum-dried durian chips   总被引:1,自引:0,他引:1  
Durian CV. Monthong was subjected to microwave vacuum drying (at 13.33 kPa) to produce durian chips. Various levels of microwave power (3.88 W g−1, 5.49 W g−1 and 7.23 W g−1) were used. Prior to the microwave vacuum drying, the sliced durian was either chilled at 4 °C or frozen at −18 °C. Both pretreatments yielded non-significant difference in dissipation factor (p > 0.05). Among several thin layer models, the Page model was found to be the best for explaining the drying characteristics of durian chips. An increase in the microwave power intensity produced a clear increase in the drying rate and did not affect lightness and yellowness of the durian chips (p > 0.05). The structure and hardness of the dried durian chips were comparable to that of conventionally fried durian chips. In addition, microwave vacuum drying reduced the fat content of the durian chips by at least 90%, compared with conventionally deep fried durian chips.  相似文献   

18.
Recent consumer trends towards healthier and low fat products have had a significant impact on the snack industry. The objective of this study was to examine the most important quality parameters of vacuum and atmospheric fried carrot slices in order to identify the specific advantages of vacuum technology. Said parameters include oil uptake, colour changes, and trans α and β-carotene degradation. Equivalent thermal driving forces were used (ΔT = 60 °C and 80 °C) to compare the processes, maintaining a constant difference in temperature between the oil and the boiling point of water at the working pressure. The results showed that vacuum frying can reduce oil content by nearly 50% (d.b.) and preserve approximately 90% of trans α-carotene and 86% of trans β-carotene. This process also allowed for the raw carrot colour to be preserved, which was reflected by good correlations between a∗ and trans β-carotene content, b∗ and trans α-carotene content, and hue and total carotenoid content.  相似文献   

19.
The present work deals with the kinetics of partitioning of oil on the surface as well as in the structure during holding of fried potato slices at elevated temperatures (100, 120, 140, 160 and 180 °C) compared with controls. After frying, the oil present on the surface migrates into structure due to condensation of vapor inside the product resulting in the creation of a vacuum. However, the oil present on the surface need not migrate into the structure, if the fried product is held at elevated temperatures. Further, the excess oil, which did not migrate into structure, can be removed by absorbent paper. The oil partition coefficient, defined as the ratio of oil present on the surface to the structure, during holding of samples at 180 °C was found to be 3.06, whereas the oil partition coefficient of the sample held at ambient temperature was 0.53, which indicates the availability of oil on the surface of fried product held at elevated temperature. The mass transfer coefficient of oil corroborated with the above finding. The holding of deep-fat fried product at 180 °C followed by the removal of oil from the surface using high absorbent paper reduced the oil content of the final product from 0.440 to 0.332 kg of oil/kg dry solids.  相似文献   

20.
Texture of potatoes with different shapes (slices and strips) were evaluated after frying and in some cases after baking. Blanched and unblanched potato slices (Bintje variety) were fried at four oil temperatures: 160, 170, 180 and 190C until reaching a moisture content of ∼1.7%. A puncture test with three point support for the slices was applied to measure the texture of potato chips using the following parameters extracted from the force versus distance curves: maximum force of break (MFB) and deformation of break (DB). These two parameters were useful to follow the changes in texture of the fried slices with moisture content at different frying temperatures. Blanched and unblanched potato strips were partially fried at 160C and 190C for 60, 90 and 120 s. The par-fried potatoes were frozen at -20C for one day after which they were baked at 200C for 15 min. The texture of the baked potato strips was evaluated using a bending test with two support points. From the force versus distance curves, two parameters were extracted: maximum force of deformation (MFD) and maximum deformation (MD). Significant higher MFB and lower DB values (P > 0.1) for unblanched fried slices indicate that these are crispier than blanched chips for moisture contents lower than 4% (6.59 N and 0.62 mm vs 5.74 N and vs 0.75 mm for unblanched and blanched chips, respectively, average values for the four frying temperatures employed). There was no effect of the frying temperature and the pretreatment (blanching or unblanching) on the texture of the frozen par-fried potatoes after baking when compared at the same residual moisture content, but blanched potato strips lost moisture more slowly both in frying and in baking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号