首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高对天然植物精油的包埋效果,以海藻酸钠和多孔淀粉为壁材,以牛至精油为芯材,采用锐孔法制备多孔淀粉/海藻酸钠牛至精油微胶囊。通过单因素实验和正交实验对精油微胶囊的制备工艺进行了优化,并通过扫描电镜对精油微胶囊的结构进行了表征。得到精油微胶囊优化的制备条件为:精油淀粉比1∶3,海藻酸钠溶液浓度2.5%,氯化钙浓度1.5%,针头型号9号,在此条件下精油微胶囊包埋率为88.25%,产率为44.27%,粒径为915μm。扫描电镜图像结果表明以多孔淀粉与海藻酸钠为壁材制得的微胶囊外观良好,表面呈交联多孔结构,一定程度上弥补了单一壁材海藻酸钠所制微胶囊外观上的缺陷。  相似文献   

2.
锐孔-凝固浴法制备大蒜油微胶囊的工艺   总被引:1,自引:0,他引:1  
文章主要研究了锐孔-凝固浴法制备大蒜油微胶囊的工艺过程和方法。试验以大蒜油为芯材,以海藻酸钠为壁材,氯化钙为固化液,探讨了海藻酸钠浓度、芯材与壁材比例、乳化剂浓度、氯化钙浓度及乳化温度等影响成型的主要因素。通过三元二次回归正交实验确定了制备大蒜油微胶囊的最佳工艺条件,并对最佳工艺条件下制备的微胶囊进行包埋率的测定。结果表明:锐孔法制作大蒜油微胶囊的最佳工艺条件为壁材海藻酸钠的浓度为1.4%,芯材大蒜油与壁材的配比为3.8:1,乳化剂的浓度为0.3%,乳化温度为65℃,凝固浴氯化钙的浓度为2%;包埋率可以达到77.21%。  相似文献   

3.
采用锐孔凝固浴法制备表面活性肽微胶囊,并以海藻酸钠为壁材,氯化钙溶液作为固化液。在单因素的基础上,以包埋率作为评价指标,通过响应面实验对微胶囊制备过程中的氯化钙浓度、芯壁比、海藻酸钠浓度、操作温度四个因素进行优化。结果表明:氯化钙浓度为2%,操作温度为49℃,海藻酸钠与表面活性肽比例为1∶2,海藻酸钠浓度为2.4%时,包埋率达到了87.6%,载药量为12.5%。通过肠液缓释实验发现,微胶囊在9h内的释放率达到了91.7%,具有很好的缓释效果。  相似文献   

4.
以经微波辅助萃取的分蘖葱头油脂为芯材,选用海藻酸钠为壁材,并采用锐孔法对分蘖葱头油脂进行包埋制作葱油胶囊。以包埋率为评判指标,以海藻酸钠浓度、芯壁比、乳化剂浓度和乳化温度为研究因素,通过正交试验确定分蘖葱头油脂微胶囊制备的最佳条件为:海藻酸钠浓度1.5%、芯壁比3.5∶1、氯化钙浓度2%、乳化温度60℃~70℃。在此条件下得到分蘖葱头油脂微胶囊包埋率为88.27%。  相似文献   

5.
锐孔法制备原花青素微胶囊工艺研究   总被引:1,自引:0,他引:1  
为提高原花青素的稳定性,采用锐孔法,以原花青素为芯材,海藻酸钠为壁材制备原花青素微胶囊,并优化其制备工艺。以包埋率为主要指标,通过单因素试验考查海藻酸钠浓度、凝固液氯化钙浓度、芯壁比、针头孔径、下滴高度等因素对原花青素微胶囊化的影响;并进一步采用正交试验优化得到制备原花青素微胶囊的最佳工艺为海藻酸钠浓度3%,氯化钙浓度3%,芯壁比1:4(芯材浓度1.5%),针头孔径0.45mm,下滴高度8cm;此时微胶囊化产率和效果最好,包埋率可达77.83%。视频变焦显微镜图显示,原花青素微胶囊有良好的形态分布。  相似文献   

6.
为探究微胶囊包埋机制备花青素微胶囊的最优方法,提高花青素的包埋率,扩宽其工业应用范围。以海藻酸钠为壁材、黑米花青素为芯材,通过离子凝胶化,利用微胶囊包埋机,采用双喷头包埋法制备黑米花青素微胶囊。以包埋率为检测指标,在单因素实验的基础上采用4因素3水平L_9(3~4)的正交实验,优化制备微胶囊的工艺参数。实验结果表明,芯壁比为1:3、海藻酸钠浓度为1.8%(w/v)、CaCl_2浓度为1.5%(w/v)、芯材喷头孔径为450 μm时达到最佳包埋效果,包埋率为73.71%;同时光学显微镜图像显示,微胶囊呈球形,表面光滑完整,界限清晰,厚度均匀,具有良好的形态特征。研究结果可为微胶囊包埋机的应用及功能性成分包埋递送提供一定的指导作用。  相似文献   

7.
用Plackett-Burman法筛选出影响蓝靛果花色苷中粒度微胶囊包埋率的主要因素,对筛选出的主因素进行最陡爬坡实验来逼近最佳响应面区域,利用响应面Box-Behnken设计对乳化凝胶法制备微胶囊的工艺进行了优化。结果表明:4个影响包埋率的主要因素分别为海藻酸钠浓度、芯壁材比例、CaCl2浓度和Span80浓度。通过Box-Behnken设计,利用minitab15软件进行回归分析,确定制备蓝靛果花色苷微胶囊的最优工艺参数为:海藻酸钠浓度2.94%、芯壁材比例1∶2.05、CaCl2浓度3.19%、Span80浓度6.21%。在优化后的条件下,中粒度微胶囊包埋率可以达到73.7%。  相似文献   

8.
以壳聚糖、海藻酸钠作为壁材,用复凝聚相法对薄荷香精进行包埋,通过海藻酸钠的单因素实验确定壳聚糖和海藻酸钠比例为1∶1,运用响应面分析法优化影响微胶囊包埋的主要因素:壁材浓度、芯材/壁材比、pH和搅拌速度,采用多元二次回归方程拟合上述四个因素与包埋率的函数关系,确定了复凝聚相法制备微胶囊的最佳条件为芯材/壁材比1∶1.5,搅拌速度2500r/min,壁材浓度0.5%和pH4.4,在此条件下包埋率为82.4%。  相似文献   

9.
《食品与发酵工业》2019,(23):109-114
为获得稳定性好、包埋率高的蓝莓花青素微胶囊,以海藻酸钠作为壁材、蓝莓花青素为芯材制备花青素微胶囊,并分析了花青素微胶囊的稳定性和体外缓释性能。结果表明,花青素微胶囊的最佳制备工艺为:芯材和壁材体积比1∶2、海藻酸钠质量浓度1. 5 g/100 m L、CaCl_2质量浓度1. 5 g/100 m L、针头孔径0. 60 mm。此时其包埋率为90. 16%,且微胶囊呈球状,表面光滑;制备的蓝莓花青素微胶囊具有良好的缓释作用,其在胃模拟液中持续释放2 h,释放率为25. 17%,在模拟小肠液环境中可持续释放4 h,释放率达到89. 26%。同时,微胶囊处理后的花青素对pH值和温度稳定性均有提高。因此,微胶囊包埋可以提高蓝莓花青素的稳定性和缓释作用,对蓝莓花青素的应用具有良好前景。  相似文献   

10.
天然食用色素花青素的微胶囊化   总被引:5,自引:2,他引:5  
研究了喷雾干燥法制备高包埋率微胶囊化花青素的壁材组成以及工艺条件。结果表明,花青素/壁材为25%,明胶/海藻酸钠为1∶4,壳聚糖浓度为0.75%;喷雾干燥的进口温度130℃,出口温度90℃时,花青素的微胶囊化效果最好,包埋率高。微胶囊化花青素的稳定性明显提高。  相似文献   

11.
以海藻酸钠为壁材,采用锐孔法制备黄酮类化合物微胶囊。通过单因素和正交试验确定影响黄酮类化合物微胶囊制备的主要因素,优化工艺条件。实验确定最佳优化工艺条件为:海藻酸钠浓度为1.4%,芯壁比为3:2,CaCl2浓度为1.4%,单甘酯/芯材为0.2g/g,在此条件下,产品的平均包埋率可达92.59%,且微胶囊产品结构坚硬、圆整,无拖尾现象。  相似文献   

12.
选用酵母细胞为微胶囊壁材,对制备薄荷油微胶囊的工艺条件进行了研究,采用单因素试验探索芯壁比、包埋温度、包埋时间、加水量等微胶囊化条件对薄荷油包埋率的影响,在此基础上采用响应面分析法优化微胶囊化条件,得到具有显著性的拟合回归方程。试验结果表明:酵母细胞对薄荷油进行微胶囊化的最优条件为:包埋温度48℃,包埋时间6 h,加水量13 m L/g。在此条件下得到薄荷油的最优包埋率为57.33%,与预测值十分接近,薄荷油已被包入酵母壁材内。  相似文献   

13.
用Plackett-Burman法筛选出影响蓝靛果花色苷中粒度微胶囊包埋率的主要因素,对筛选出的主因素进行最陡爬坡实验采逼近最佳响应面区域,利用响应面Box-Behnken设计对乳化凝胶法制备微胶囊的工艺进行了优化.结果表明:4个影响包埋率的主要因素分别为海藻酸钠浓度、芯壁材比例、CaCl2浓度和Span80浓度.通过Box-Behnken设计,利用minitab15软件进行回归分析,确定制备蓝靛果花色苷微胶囊的最优工艺参数为:海藻酸钠浓度2.94%、芯壁材比例1:2.05、CaCl2浓度3.19%、Span80浓度6.21%.在优化后的条件下,中粒度微胶囊包埋率可以达到73.7%.  相似文献   

14.
研究了喷雾干燥法制备高包埋率微胶囊化花青素的壁材组成以及工艺条件.结果表明,花青素/壁材为25%,明胶/海藻酸钠为14,壳聚糖浓度为0.75%;喷雾干燥的进口温度130℃,出口温度90℃时,花青素的微胶囊化效果最好,包埋率高.微胶囊化花青素的稳定性明显提高.  相似文献   

15.
以海藻酸钠为壁材,采用锐孔法制备甜菜红素微胶囊,以此提高甜菜红素稳定性。以包埋率为评价指标,通过单因素实验考查海藻酸钠质量浓度、Ca Cl2浓度、芯壁比、针头孔径、固化时间、下滴高度、下滴速度等对甜菜红素微胶囊化的影响。在单因素实验的基础上,运用响应面分析法优化甜菜红素微胶囊的较佳制备工艺为海藻酸钠质量浓度2.9%,Ca Cl2浓度3.2%,芯壁比1∶2.7,针头孔径0.7mm,固化时间为30min。在上述较佳条件下制备的微胶囊的包埋率为77.38%,和模型预测值78.75%相比,相对误差仅为1.74%。进行了耐光、耐热和耐酸性实验对比,结果表明,微胶囊化工艺确实提高了甜菜红素稳定性。  相似文献   

16.
采用单因素和均匀试验设计,以包埋率为指标,考察海藻酸钠浓度、CaCl2浓度、芯壁材比、固化时间对锐孔法制作红枣色素微胶囊的影响。结果表明,红枣色素微胶囊化最优工艺条件,海藻酸钠浓度为6.0%、CaCl2浓度3%、芯壁材之比1∶5、固化时间1.0 h,在此工艺条件下制得的微胶囊颗粒包埋率达75.1%,产品圆形、均匀饱满、色泽橙红。  相似文献   

17.
文章旨在制备丁香酚微胶囊并研究其缓释性。以丁香酚为芯材,海藻酸钠(Sodium alginate,ALG)和魔芋葡甘聚糖(Konjac glucomannan, KGM)为壁材,采用冷冻干燥法制备丁香酚缓释微胶囊。以包埋率为指标,通过响应面分析,对不同壁材的浓度、KGM和ALG的质量比、壁材和芯材的质量比及乳化剂用量这4个因素的条件进行优化。采用红外光谱扫描(Infrared spectrometer,IR)、热重分析仪对优选实验条件下制备得到的微胶囊进行表征,并对其缓释性进行研究。结果显示:在壁材浓度为2.5%、KGM和ALG的质量比为1:1、壁材和芯材的质量比为5:2、乳化剂用量为0.5 mL时,制备的微胶囊包埋率平均为50.15%;对比丁香酚微胶囊、壁材和芯材的红外光谱图可知,丁香酚被壁材所包裹;热稳定性和缓释性研究表明,相较于未包覆的丁香酚,丁香酚微胶囊更加稳定,不易挥发。制备的丁香酚微胶囊具有良好的缓释性且其缓释过程符合一级动力学方程。  相似文献   

18.
选取海藻酸钠为壁材,肉桂醛为芯材,优化喷雾冷凝法制备微胶囊的工艺。通过单因素试验考察海藻酸钠浓度、肉桂醛浓度、乳化剂加入量对微胶囊包埋率的影响,然后对肉桂醛微胶囊的粒径分布和表面结构进行表征,并研究了所制微胶囊在水中的释放速度。结果表明:海藻酸钠浓度为0.4%,肉桂醛浓度为1%,乳化剂(吐温60)的加入量为0.4%,肉桂醛微胶囊的包埋率最高达到62.5%;肉桂醛微胶囊粒径在18.5μm~995.6μm范围分布,其中90%粒径小于383.6μm;光学显微镜下可以观察到肉桂醛微胶囊呈圆球状,电子扫描显微镜可以观察到微胶囊表面呈多孔状;肉桂醛微胶囊在水中的释放速度先上升后下降,到240 min后达到释放平衡状态。本研究为喷雾冷凝法在香精香料包埋及应用提供技术支撑。  相似文献   

19.
为确定苹果多酚微胶囊的最佳工艺,提高苹果多酚对不利环境的抗性及缓释能力,利用响应面法采用海藻酸钠、壳聚糖和氯化钙为壁材,以包埋率为响应值进行苹果多酚微胶囊工艺优化,并将优化后的微胶囊在模拟人工胃液、肠液中进行耐受性分析。结果显示,海藻酸钠浓度、氯化钙浓度、pH、芯壁比对苹果多酚包埋率均有显著影响。海藻酸钠浓度0.020 g/mL,氯化钙浓度0.040 g/mL,pH7.0,芯壁比2:1时,苹果多酚微胶囊的包埋率达到85.13%。微胶囊产品能减少苹果多酚在胃肠道中受到的破坏,在模拟胃液和肠液环境中得到了很好的释放,肠液中的最大释放率为83.00%。实验结果显示,该方法简单可行,有效提高了苹果多酚微胶囊的包埋率及缓释能力。  相似文献   

20.
以壳聚糖、海藻酸钠分别和明胶复合为壁材,以失水山梨醇为乳化剂,戊二醛为交联剂的条件下,通过复凝聚法制备棕榈油相变蓄热微胶囊。试验结果表明,以壳聚糖和明胶为复合壁材,芯壁比为1∶3,体系p H值为6时,可获得表面含油率为57%,包埋率为42%的微胶囊;以海藻酸钠和明胶为复合壁材,芯壁比为1∶4,p H值为4,可获得表面含油率为55%,包埋率为44%的微胶囊。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号