首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High hydrostatic pressure (HHP) has drawn considerable attention because of its potential application in food industry. Ferritin, an iron storage protein, is widely distributed in food made from legume seeds, which is highly stable due to its shell-like structure. Therefore, it is of special interest to know whether or not high HHP treatment has effect on this protein. In this study, the structure and activity of soybean seed ferritin (SSF) were examined by circular dichroism spectrum (CD), UV–VIS and fluorescence spectrophotometry in conjunction with stopped-flow light scattering upon treatment with HHP at 400 MPa for 10 min. Results revealed that such treatment has little effect on the primary and secondary structure of SSF, but pronouncedly altered its tertiary and quaternary structure. As a result, the protein aggregation property and iron release activity were dramatically changed, while its activity of iron oxidative deposition was kept unchanged.  相似文献   

2.
Plant ferritin from legume seeds co-exists with coenzyme NADH (a reduced form of nicotinamide-adenine dinucleotide) in many foodstuffs. In the present study, the interaction of NADH with apo pea seed ferritin (PSF) was investigated by fluorescence resonance energy transfer (FRET), fluorescence titration, transmission electron microscope (TEM), and isothermal titration calorimetry (ITC). We found that NADH molecules bound on the outer surface of PSF close to the 4-fold channels, which was 1.58 nm from tryptophan residue (Trp). Consequently, such binding facilitates iron release from holo PSF, which might have a negative effect on PSF as an iron supplement, while NADH was oxidised into NAD+. However, the binding of NADH to the protein does not affect the entry of toxic ferrous ions into the apo protein shell, where these ferrous ions were oxidised into less toxic ferric ions. Moreover, NADH binding markedly affects the tertiary structure around Trp residues of PSF. These findings advanced our understanding of the interactions between different naturally occurring components in a complex food system.  相似文献   

3.
Biofortification with phytoferritin is considered as a promising approach to the eradication of iron deficiency anemia. However, phytoferritin is not stable enough to be against degradation by protease(s) in the gastrointestinal tract, thereby leading to its low bioaccessibility. Fortunately, binding of proanthocyanidins (PAs) to protein offers the opportunity to prevent phytoferritin from degradation by the protease(s). To test this idea, the interaction of PAs from grape seeds with soybean seed ferritin (SSF) was studied using a combination of fluorescence, CD spectra, stopped-flow light scattering (SLS), and dynamic light scattering (DLS). Results showed that PAs can indeed bind to SSF in a dose-dependent manner. Consequently, such binding can significantly inhibit the degradation of SSF by the protease(s) in simulated gastric fluid (SGF) at pH 4.0 when the mass ratio of PAs to SSF is more than 1:1. Similarly, the stability of SSF in simulated intestinal fluid (SIF) was also increased upon treatment with PAs. These findings raise the possibility that the bioaccessibility of phytoferritin to the gastrointestinal tract was improved in the presence of proanthocyanidins.  相似文献   

4.
铁蛋白是一种广泛存在于生命体中的铁贮藏蛋白,具有调节机体铁代谢平衡和去除二价铁毒性的双重功能。缺铁严重影响着全球近一半人的健康,研究表明,铁蛋白具有良好的补铁活性而且安全、高效,能够取代具有毒副作用的传统补铁试剂。因此,寻求并开发以铁蛋白为原料的新型补铁功能食品已成为一种趋势。为了更科学地应用于实践和开发,对铁蛋白理化性质及其生物学功能的阐明显得颇为重要。目前,关于铁蛋白铁释放机理的研究分为体外和体内两个方面,体外机理涉及还原剂和螯合剂的共同作用,而体内机理主要涉及降解途径和酶介导的还原释放途径。综述了国内外有关铁蛋白铁释放机理的研究进展,以期为新型补铁功能食品的开发提供理论依据。  相似文献   

5.
以缺铁的铁蛋白和橙皮素为原料,在pH 9条件下制备铁蛋白-橙皮素共价复合物,探讨共价结合对蛋白结构和理化性质的影响。结果表明,橙皮素与铁蛋白的共价作用降低了铁蛋白的荧光强度并产生红移现象,改变了铁蛋白的结构。铁蛋白-橙皮素共价复合物的溶解度改变,等电点降低,其铁氧化沉淀活性提高,铁的还原释放活性降低。同时,共价复合物的热稳定性增强。铁蛋白-橙皮素复合物的形成赋予了铁蛋白新的功能特性,对探究食品组分相互作用,开发基于铁蛋白的相关食品或药品具有一定的理论指导。  相似文献   

6.
Phytic acid is present in many plant systems, constituting about 1 to 5% by weight of many cereals and legumes. Concern about its presence in food arises from evidence that it decreases the bioavailability of many essential minerals by interacting with multivalent cations and/or proteins to form complexes that may be insoluble or otherwise unavailable under physiologic conditions. The precise structure of phytic acid and its salts is still a matter of controversy and lack of a good method of analysis is also a problem. It forms fairly stable chelates with almost all multivalent cations which are insoluble above pH 6 to 7, although pH, type, and concentration of cation have a tremendous influence on their solubility characteristics. In addition, at low pH and low cation concentration, phytate‐protein complexes are formed due to direct electrostatic interaction, while at pH >6 to 7, a ternary phytic acid‐mineral‐protein complex is formed which dissociates at high Na concentrations. These complexes appear to be responsible for the decreased bioavailability of the complexed minerals and are also more resistant to proteolytic digestion at low pH. Development of methods for producing low‐phytate food products must take into account the nature and extent of the interactions between phytic acid and other food components. Simple mechanical treatment, such as milling, is useful for those seeds in which phytic acid tends to be localized in specific regions. Enzyme treatment, either directly with phytase or indirectly through the action of microorganisms, such as yeast during bread‐making, is quite effective, provided pH and other environmental conditions are favorable. It is also possible to produce low‐phytate products by taking advantage of some specific interactions. For example, adjustment of pH and/or ionic strength so as to dissociate phytate‐protein complexes and then using centrifugation or ultrafiltration (UF) has been shown to be useful. Phytic acid can also influence certain functional properties, such as pH‐solubility profiles of the proteins and the cookability of the seeds.  相似文献   

7.
Iron and zinc interact at the enterocyte and influence the absorption of one another. We have previously reported that zinc noncompetitively inhibits iron uptake in Caco-2 cells, a widely accepted model of the absorptive enterocyte. However, the determinants of this interaction, such as the effect of dietary ligands, remain uncharacterized. Dietary ligands selectively chelate iron and zinc in definite stoichiometric proportions and thus alter the bioavailability from food matrices. Here, we have used common dietary ligands, such as ascorbic acid, phytic acid, tannic acid, tartaric acid, cysteine, histidine, and methionine to characterize iron, zinc uptake individually and in combination, using Caco-2 cells. Selective chelation of zinc, using cysteine, decreased the magnitude of inhibition of iron uptake but could not reverse the inhibition. On the other hand, selective increase in iron uptake in the presence of methionine resulted in increased zinc uptake, rather than inhibition. Taken together, these in vitro results suggest that dietary ligands can modulate iron-zinc interaction and that zinc cannot competitively inhibit iron uptake.  相似文献   

8.
铁素的缺乏严重影响着全球近一半人的健康,传统的补铁制剂由于会时人体产生副作用逐渐被禁止使用,因此,寻找安全、高效的补铁制剂势在必行.铁蛋白是广泛存在于生物体中的一种铁贮藏蛋白,它具有去除铁的毒性以及调节铁代谢平衡的双重功能.研究表明,铁蛋白具有良好的补铁活性,所以它可以作为加工原料被开发成补铁型功能食品,为此,对铁蛋白理化性质及其生物学功能的阐明就显得颇为重要.目前,有关铁蛋白的基础研究主要集中于铁蛋白的铁氧化沉淀和还原释放机理的研究,相对于后者而言,铁蛋白铁氧化沉淀机理的研究比较清楚.本文综述了国内外有关铁蛋白铁氧化沉淀机理的研究进展,以期为以后新型补铁功能食品的开发提供理论依据.  相似文献   

9.
This paper investigates the possibility for iron fortification of food using protein gel particles in which iron is entrapped using cold-set gelation. The aim is to optimize the iron encapsulation efficiency of whey protein by giving the whey protein different heat treatment prior to gelation with iron. The effect of the heat treatment conditions (mild-intermediate-severe) on the iron-induced cold-set gelation process was studied to optimize the gel strength in relation to the iron concentration. Rheology was used to study the protein gel formation, and the stability of the gel particles and iron encapsulation efficiency was determined by measuring the protein and iron content at different pH. Both the iron concentration and the heat treatment conditions appear to affect the gel formation process and gel strength of the iron-induced cold-set gels. With the protein gel particles being stable at a broad pH range, the release of iron from the particles was studied as a function of time. The low release of iron at neutral pH indicated good encapsulation efficiency and capability of whey protein to keep iron bound. At low pH the release of iron increased, as is desired for bio-accessibility. In addition to differences in gel strength, the most relevant result caused by the pre-treatment of the whey protein is revealed in the amount of iron that can be entrapped per protein. It is shown that the amount of iron can be increased going from mild to severe heat treatment conditions. This suggests that the concept of using whey protein particles with iron can effectively be used to fortify food products with iron for human consumption.  相似文献   

10.
The evaluation of antifungal properties in cinnamaldehyde (CA)-loaded microcapsules is significant to clarify potential food applications in various food matrices and systems. The impact of tannic acid (TA) crosslinking on the release and the antifungal properties of CA microcapsules was investigated based on gelatin/gum Acacia complex coacervates. The inhibition zone diameter of microencapsulated CA against Aspergillus brasiliensis was dependent on the TA addition and retained 26.1 ± 0.1 mm after 180-day storage at 25 °C. Specifically, TA enhanced hydrogen bond interactions between the microcapsule wall materials and favoured a sustained release of CA during the incubation with Aspergillus brasiliensis. Meanwhile, confocal laser scanning microscopic observation revealed that the microstructure of multinuclear microcapsules was more compact and intact under the crosslinking of 0.4% TA. The comparation of microscopic morphology and membrane potential of Aspergillus brasiliensis exerted a synergistic antifungal effect between CA and TA crosslinked microcapsules.  相似文献   

11.
Phosvitin, one of the most noteworthy bioactive components of hen egg yolk, is an amphiphilic protein that stands out with its unique composition and functionality in the food industry and health. Phosvitin consists of 4% of egg yolk dry matter and 11% of egg yolk proteins. It is considered as the most phosphorylated protein with 10% phosphorus. Besides, some potential novel phosphopeptides containing clusters of phosphoserines can be derived from hen's egg yolk phosvitin. Phosvitin, which has many functional features thanks to its unique structure, is known primarily for its metal bonds binding (iron, calcium, etc.) feature. On the other hand, its phosphopeptides may increase the bioavailability of metals compared to phosvitin. Although this feature of phosvitin may partially decrease the bioavailability of especially iron in the egg, it allows the phosvitin to have many bioactivities in the food industry and health. Lipid oxidation, which is a serious problem in the food industry, can be inhibited by adding phosvitin and its derived phosphopeptides to the food production chain via inhibiting bivalent iron. Because phosvitin is an amphiphilic protein capable of chelating, it also shows potential antibacterial effects against the Gram-negative bacteria. Moreover, the literature has recently been attempting to define the promising relationship between phosvitin and its phosphopeptides and plenty of health-promoting activities such as immune-enhancing, melanogenesis inhibitor, anti-ageing, and anticancer. In this review, current information on the hen's egg yolk phosvitin and its phosphopeptides and their bioactivities in the food industry and health are discussed and some future directions are given.  相似文献   

12.
ABSTRACT:  Antioxidant properties in food are dependent on various parameters. These include the pH value and interactions with food components, including proteins or metal ions. Food components affect antioxidant stability and also influence the properties of microorganisms and their viability. This paper describes an investigation of the effect of pH on the antioxidant and antibacterial properties of caffeic acid in different media. The pH values studied, using an oil-in-water emulsion as model system, were 3, 5 (with and without phosphate buffer), and 9. Effects of mixtures of caffeic acid, bovine serum albumin (BSA), and Fe (III) on oxidative deterioration in the emulsion samples were studied. The results show that the antioxidant activity of caffeic acid was increased by the presence of BSA. This effect was pH dependent and was affected by the presence of iron ions. Antibacterial properties were also pH dependent. The minimum concentration of caffeic acid required to inhibit some microorganisms in the pH range of 5 to 7 was determined. A concentration of 0.4% (w/w) caffeic acid was enough to inhibit the growth of some of the studied microorganisms in the pH range of 5 to 7. However, near-neutral pH concentrations higher than 0.4% were needed to inhibit some microorganisms, including Listeria monocytogenes , E. coli, and Staphylococcus aureus , in the medium.  相似文献   

13.
Deuterium nuclear magnetic resonance spectroscopy (2H NMR) spin-lattice relaxation (T1) experiments were used to examine solution-phase, noncovalent interactions between deuterated monoaromatic compounds (phenol-d5, pyridine-d5, benzene-d6) and Suwannee River, soil, and peat humic acids. Noncovalent interactions, in aqueous solution, were examined as a function of solution pH, monoaromatic hydrocarbon functional groups, and humic acid identity. Benzene interacted with dissolved humic acids at all pH values; however, these interactions increased with decreasing pH and generally were proportional with the humic acid percent aromaticity. Pyridine behaved similarly as benzene; however, two modes of interaction between pyridine and humic acids were detected as a function of pH and humic acid type: bonding with the lone pair of electrons of pyridine's nitrogen and pi-pi interactions between the aromatic ring of pyridine and aromatic components of humic acid. The latter interaction was favored by increasing humic acid percent aromaticity and decreasing solution pH. On the other hand, because of its strong capacity for hydrogen bonding, phenol interacted preferentially with water, except at pH values 5 or lower and with humic acids with 45% or greater aromaticity. Under these conditions, strong interactions between phenol and humic acids were observed. These results demonstrate that solution-phase, noncovalent interactions between monoaromatic compounds and humic acids are a function of solution pH, percent aromaticity, and the monoaromatic functional group.  相似文献   

14.
铁蛋白(ferritin)是一种广泛存在于动物、植物和微生物中的多亚基笼形结构蛋白,具有调节体内铁代谢平衡的功能,同时可以保护细胞免受因各种环境胁迫而导致的细胞氧化损伤。近年来,随着研究的深入,铁蛋白独特的纳米笼形结构以及特殊的理化性质使其成为一种具有广泛应用前景的新型蛋白质纳米载体材料。文章对铁蛋白的分子结构和功能进行了简要阐述,介绍了铁蛋白纳米颗粒的制备方法,总结了铁蛋白装载外源性小分子的基本途径:基于可逆组装特性的分子装载途径和基于环境响应的通道"门控"特性的分子装载途径;并综述了铁蛋白作为纳米载体在食品生物活性物质应用中的最新研究进展,以期为铁蛋白纳米载体的开发及在食品领域的应用提供研究思路。  相似文献   

15.
16.
Advanced structures of food proteins are maintained by many forces such as hydrophobic activities, electrostatic interaction, and disulphide bond interaction, which can affect their functional characteristics to a certain extent. Therefore, many approaches have been utilised to improve functional characteristics of food proteins. pH-shift process refers to the method that food proteins are treated under extreme alkaline or acid conditions followed by adjusting pH to isoelectric point or neutral pH. Many studies have showed that pH-shift process can significantly affect the functional characteristics of food proteins, for example emulsifying activities, forming property, solubility and water/oil adsorption ability. pH-shift process has been utilised to recover protein isolates from many sources including fish, fish by-products, meat processing products. Many researches have indicated that the functional and physicochemical characteristics of recovered protein isolates are significantly influenced by pH-shift process. In this paper, the latest studies regarding the functional and physicochemical characteristics of proteins treated or recovered through pH-shift process, and potential applications of obtained protein isolates in the production of the hydrolysates or used as a delivery system were reviewed.  相似文献   

17.
Due to the high prevalence of iron and vitamin A deficiencies and to the controversy about the role of vitamin A and carotenoids in iron absorption, the objectives of this study were to evaluate the following: (1) the effect of a molar excess of vitamin A as well as the role of tannic acid on iron uptake by Caco‐2 cells; (2) iron uptake and ferritin synthesis in presence of carotenoids without pro‐vitamin A activity: lycopene, lutein, and zeaxantin; and (3) iron uptake and ferritin synthesis from ferrous fumarate and NaFe‐EDTA. Cells were incubated 1 h at 37 °C in PBS pH 5.5, containing 59Fe and different iron compounds. Vitamin A, ferrous fumarate, β‐carotene, lycopene, lutein, zeaxantin, and tannic acid were added to evaluate uptake. Ferritin synthesis was measured 24 h after uptake experiments. Vitamin A had no effect on iron uptake by Caco‐2 cells, and was significantly lower from NaFe‐EDTA than from ferrous fumarate (15.2 ± 2.5 compared with 52.5 ± 8.3 pmol Fe/mg cell protein, respectively). Carotenoids increase uptake up to 50% from fumarate and up to 300% from NaFe‐EDTA, since absorption from this compound is low when administered alone. We conclude the following: (1) There was no effect of vitamin A on iron uptake and ferritin synthesis by Caco‐2cells. (2) Carotenoids significantly increased iron uptake from ferrous fumarate and NaFe‐EDTA, and were capable of partially overcoming the inhibition produced by tannic acid. (3) Iron uptake by Caco‐2 cell from NaFe‐EDTA was significantly lower compared to other iron compounds, although carotenoids increased and tannic acid inhibited iron uptake comparably to ferrous fumarate.  相似文献   

18.
Antioxidant properties and health benefits of hydroxycinnamic acids cause food technologists to apply them as additives to new functional foods. Meanwhile, many of these products contain significant amounts of proteins in the native form or added isolates and hydrolysates. In this type of food, interactions between hydroxycinnamic acids and proteins will inevitably occur. The effect of such interactions in designed food could be more important than in the processed natural raw food materials and can significantly decrease the bioavailability of hydroxycinnamic acids and proteins as well as antioxidant activity of the product. This review describes chemical mechanism of protein–hydroxycinnamic acid interactions and the effect of formed adducts on technological and nutritional properties of food.  相似文献   

19.
Ferritins are members of the superfamily of iron storage and detoxification proteins present in all living organisms and play important roles in controlling cellular iron homeostasis. In contrast to animal ferritin, relatively little information is available on the structure and function of phytoferritin. Phytoferritin is observed in plastids whereas animal ferritins are largely found in the cytoplasm of cell. Compared to animal ferritin, phytoferritin exhibits two major distinctive features in structure. First, phytoferritin contains a specific extension peptide (EP) at the N-terminal while animal ferritin lacks it. The EP is located on the exterior surface of protein, which recently has been found to act as a second ferroxidase center for iron-binding and oxidation, and regulate iron release during the germination and early growth of seedlings. Second, only H-type subunit has been identified in phytoferritin, which is usually a heteropolymer consisting of two different subunits, H-1 and H-2, sharing ~80% amino acid sequence identity. These two subunits in phytoferritin play a positively cooperative role in iron oxidative deposition in protein. Iron deficiency anemia (IDA) is the most common and widespread nutritional disorder in the world, so it is crucial to explore a safe and efficient functional factor for iron supplement. Fortunately, phytoferritin seems to be a suitable candidate. In legume seeds, more than 90% of iron is stored in the form of ferritin in amyloplasts. Recently, some studies at different levels have demonstrated that plant ferritin could be used as novel, utilizable, plant-based forms of iron for populations with a low iron status. This review focuses on recent progress in structure, function, and nutrition of phytoferritin.  相似文献   

20.
多酚与金属离子形成的金属-多酚网络(metal-polyphenol network,MPN)能发挥金属与多酚的协同效应,既具有金属离子赋予的特定功能,又具有多酚结构对各种表面的高亲和力,能吸附在纳米材料和生物界面等多种表面上,且结构更加稳定。近年来MPN发展迅猛,在很多领域都得到了广泛的应用。本文首先概述了MPN的组装机制和组装原材料(主要是单宁酸和铁离子),简要介绍了一步共混沉积法和层层组装法两种组装方法及常见的表征方法,详细论述了MPN的抗菌性、抗氧化性、吸附性和pH值响应性等功能特性及其在食品领域的应用等,并对MPN的未来发展趋势进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号