首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:为了研究双酶复合酶解大豆分离蛋白制备大豆肽的相对分子量分布及活性片段对实验性高血压大鼠的降压效果。方法:通过单因素实验优选,采取正交实验优化复合酶的酶解工艺,以酶解液对血管紧张素转换酶(ACE)抑制率为指标优选最佳工艺;通过超滤、纳滤后得到最佳分子量片段,应用左硝基精氨酸(L-NNA)诱导大鼠高血压模型,分别给予不同剂量的活性片段进行实验。结果:双酶复合酶解的最佳条件为:在料液比为1:20 g/mL的情况下,酶解温度50℃,酶底比3.0%,酶解pH7.0条件下先用菠萝蛋白酶酶解2 h后,再以酶底比4.0%加入胰蛋白酶,控制温度为40℃、酶解pH为8.0条件下酶解4 h,大豆分离蛋白的水解度35.31%。经过高效液相对酶解液的相对分子量分布得出,大豆分离蛋白原液含有的蛋白质及多肽的相对分子质量主要区间在5000~1.0×105 Da,在双酶复合酶解下,酶解液的蛋白质及多肽的相对分子质量主要区间均在500~4000 Da;通过超滤得出最佳活性片段为1000~3000 Da,药理实验表明,与模型对照组相比各组血压均有降低,且大豆肽剂量组有显著性差异(p<0.05);其中大豆肽高剂量组和卡托普利组相当。结论:双酶复合酶解制备的大豆肽相对分子量较小,活性片段对高血压大鼠模型降压作用显著。  相似文献   

2.
双酶复合法制备大豆多肽工艺的研究   总被引:9,自引:0,他引:9  
确定了双酶复合法提取制备大豆多肽的工艺条件.大豆蛋白经双酶复合酶解、活性炭脱色、超滤、真空浓缩和离心喷雾干燥等工艺,提取得到大豆多肽.通过试验确定,最佳复合酶解条件:中性蛋白酶与菠萝蛋白酶比例为3:1、pH 7.0、底物浓度4.0%、酶解时间9 h;最佳脱色处理条件:粉末活性炭用量2.0%、温度50℃、pH 3.0、吸附时间3 h;超滤分离条件:NF-1纳滤膜、截留分子量2000 D、超滤压力1.0 mPa.  相似文献   

3.
以大豆蛋白为原料,采用2709蛋白酶和木瓜蛋白酶双酶水解大豆多肽,通过正交试验优化试验条件,确定了双酶复合酶解的最佳酶解工艺条件和最佳脱色条件.应用超滤技术对大豆多肽进行分离,经干燥得到粉末状多肽产品,得率为76.5%.  相似文献   

4.
以大豆蛋白为原料,采用2709蛋白酶和木瓜蛋白酶双酶水解大豆多肽,通过正交试验优化试验条件.确定了双酶复合酶解的最佳酶解工艺条件和最佳脱色条件。应用超滤技术对大豆多肽进行分离,经干燥得到粉末状多肽产品,得率为76.5%。  相似文献   

5.
以大豆分离蛋白为原料,采用超声辅助复合酶酶解制备大豆多肽,以单因素实验为基础,选择复合酶添加量、酶解时间、酶解温度以及酶解p H为自变量,大豆多肽得率为响应值,采用响应面分析法研究各自变量及其交互作用对大豆多肽得率的影响,并对大豆多肽的相对分子质量分布进行测定。结果表明,影响大豆多肽得率的各因素强弱顺序为:酶解温度复合酶添加量酶解时间酶解p H;超声辅助复合酶酶解制备大豆多肽的最佳工艺条件为超声功率180 W、超声时间10 min、超声温度35℃、碱性蛋白酶与中性蛋白酶质量比3∶1、复合酶添加量2.04%、酶解时间4.0 h、酶解温度59℃、酶解p H 8.0,在此条件下大豆多肽得率为63.27%,相对分子质量大部分集中在1 000以下。  相似文献   

6.
本文以大豆浓缩蛋白为底物,采取纤维素酶与蛋白酶分步复合酶解法制取大豆多肽。经2%纤维素酶酶解,以高温高压作为预处理方法,碱性酶、中性酶、风味酶质量百分比例为3:1:1,pH为7.5,底物浓度为8%,酶解时间为5 h,经超滤后喷雾干燥,得到的大豆多肽粉末其大豆多肽含量为98.5%,相对分子质量≤3286,总氮含量为82.1%。  相似文献   

7.
目的:采用复合酶进行鳀鱼蒸煮液制备,分析其水解肽分子量分布及抗氧化活性。方法:利用三氯乙酸氨溶液指数(TCA-NSI)对复合酶制备鳀鱼蒸煮液效率进行评价,以单因素试验为基础,采用中心组合设计法进一步优化鳀鱼蒸煮液中水解肽制备工艺,分析酶解产物的分子量分布及抗氧化活性。结果:鳀鱼蒸煮液制备时的酶解时间最佳为45分钟、酶解温度为55℃水解肽中的分子量在1500Da内的多肽含量为81.941%。同时,结果显示水解肽对自由基清除率IC50为2.45mg/mL,对羟自由基为1.37mg/mL,对超氧阴离子为3.45mg/mL,意味着水解肽具有较强的抗氧化活性。结论:在鳀鱼蒸煮液制备时,应用复合酶能够获取抗氧化活性极高的水解肽,为开发源于海洋生物的天然抗氧化剂提供强有力的依据。  相似文献   

8.
以7S和11S大豆球蛋白为原料,选用Alcalase碱性蛋白酶在其最佳酶解条件下进行酶解,对酶解物进行超滤分离纯化抗氧化肽,并对其各组分进行保护系数和对·DPPH(1,1-二苯基苦酰基苯肼)自由基清除率的研究。结果显示:7S和11S大豆球蛋白Alcalase碱性蛋白酶酶解物经超滤后所得分子量小于5kDa,组分保护系数分别为2.38和2.21,其·DPPH自由基清除能力分别为75.63%和73.56%。并经高效液相色谱分析该组分的分子量分布在1000Da以下的含量最多,7S和11S酶解物超滤后组分分子量小于1000Da组分分别占81.13%占87.84%。  相似文献   

9.
本文开发了一种利用枯草芽孢杆菌(Bacillus subtilis)发酵大豆豆粕并结合多级超滤、纳滤配合凝胶渗透色谱(GFC)和液相色谱(HPLC)分离纯化具有血管紧张素转换酶(ACE)抑制活性的小肽的方法。利用色谱法从发酵豆粕超滤提取液中分离纯化大豆小肽,用氨基酸序列分析仪PPSQ-21和基质辅助激光解吸/电离串联飞行时间质谱基质(MALDI-TOF-TOF/MS)定性,再用标准固相肽合成法(SPPS)合成小肽,用HPLC法测定其ACE 抑制活性,并对小肽进行Sprague-Dawley Rat大鼠的心血管离体实验。结果表明,超滤后得到不同分子量滤液F1(1000~10000 Da)、F2(500~1000 Da)、F3(<500 Da)均具有不同程度的ACE 抑制活性且分子量最小的F3(<500 Da)组分最强。从F3组分中分离纯化了两个ACE 抑制活性小肽,HAGR和CGAAP,在相同浓度(2 mg/mL)下其抑制率分别为34.99%和77.79%,后者抑制活性高于F3组分。离体实验的结论同样证实,大豆提取小肽具有舒张已被收缩的血管环的活性,但活性强度与ACE抑制活性不直接相关。实验证明,枯草芽孢杆菌配合超滤的方式可以从大豆发酵物中制备具有血管生物活性的组分,其生物活性可能来源于这种组分中的部分小肽。  相似文献   

10.
包小兰 《中国油脂》2020,45(6):30-35
以亚麻籽分离蛋白为原料,利用酶解工艺制备降胆固醇活性肽。对蛋白酶进行了筛选,并通过单因素实验和正交实验确定最优酶解工艺,采用超滤分离技术得到具有较高降胆固醇活性的亚麻籽肽,并对超滤前后亚麻籽肽的氨基酸组成及降胆固醇活性进行了研究。结果表明:最佳酶解工艺条件为采用Protease M进行酶解、加酶量1. 5%、底物质量分数2. 0%、酶解温度50℃、酶解时间3 h,在此条件下亚麻籽肽的降胆固醇活性最强,胆固醇胶束溶解度抑制率达53. 19%;超滤后相对分子质量小于1 kDa的多肽组分降胆固醇活性最强,胆固醇胶束溶解度抑制率达72. 39%,较超滤前提高了19. 20个百分点。氨基酸分析结果表明,超滤后相对分子质量小于1 kDa的多肽组分的总疏水性氨基酸含量明显高于超滤前,提高了15. 97个百分点,而且多肽组分中赖氨酸/精氨酸的比值低于超滤前,这可能是其降胆固醇活性强于超滤前的主要原因。  相似文献   

11.
目的:研究鳀鱼蒸煮液的最佳酶解工艺条件,并分析所制备水解肽的分子量分布和抗氧化特性。方法:以三氯乙酸氮溶解指数(Trichloroacetic acid-nitrogen soluble index,TCA-NSI)为酶解效率的评价指标,在单因素实验基础上,运用中心组合设计法优化水解肽的制备工艺,并对酶解产物的分子量分布及抗氧化活性进行分析。结果:鳀鱼蒸煮液的最佳酶解条件为酶解时间45 min、酶解温度54.5 ℃、酶解pH8.2、碱性蛋白酶与中性蛋白酶比例1:1,在此条件下TCA-NSI可达76.51%。所制备的水解肽中分子量低于1500 Da的多肽含量可达81.941%。水解肽对DPPH自由基、羟自由基和超氧阴离子自由基清除率的IC50分别为2.45、1.37和3.45 mg/mL,表明其具有较强的抗氧化活性。结论:采用复合酶法可高效酶解鳀鱼蒸煮液,并获得具有较强抗氧化活性的水解肽,可为鳀鱼蒸煮液高值化利用及活性肽产品开发提供理论依据。  相似文献   

12.
目的:研究鳀鱼蒸煮液的最佳酶解工艺条件,并分析所制备水解肽的分子量分布和抗氧化特性。方法:以三氯乙酸氮溶解指数(Trichloroacetic acid-nitrogen soluble index,TCA-NSI)为酶解效率的评价指标,在单因素实验基础上,运用中心组合设计法优化水解肽的制备工艺,并对酶解产物的分子量分布及抗氧化活性进行分析。结果:鳀鱼蒸煮液的最佳酶解条件为酶解时间45 min、酶解温度54.5℃、酶解pH8.2、碱性蛋白酶与中性蛋白酶比例1∶1,在此条件下TCA-NSI可达76.51%。所制备的水解肽中分子量低于1500 Da的多肽含量可达81.941%。水解肽对DPPH自由基、羟自由基和超氧阴离子自由基清除率的IC_(50)分别为2.45、1.37和3.45 mg/mL,表明其具有较强的抗氧化活性。结论:采用复合酶法可高效酶解鳀鱼蒸煮液,并获得具有较强抗氧化活性的水解肽,可为鳀鱼蒸煮液高值化利用及活性肽产品开发提供理论依据。  相似文献   

13.
微波双酶协同水解大豆分离蛋白制备小分子肽的研究   总被引:3,自引:0,他引:3  
研究微波加热条件下,用碱性蛋白酶和胰蛋白酶双酶水解大豆分离蛋白。以氨基氮为评价指标,确定了单酶水解工艺,双酶分步水解的顺序和制备小分子大豆多肽的最佳条件,并通过毛细管电泳方法对水解多肽的分子量进行测定。实验表明:双酶水解优于单酶,制得的大豆肽分子量主要集中在5000以下。  相似文献   

14.
以大豆分离蛋白(SPI)为原料,分别采用碱性蛋白酶、胰蛋白酶、风味蛋白酶对SPI进行酶解,测定水解度及ACE抑制率,结果表明碱性蛋白酶酶解液效果较好.采用响应曲面法对碱性蛋白酶酶解工艺参数进行优化,在此基础上采用双酶协同酶解和三酶联合酶解,然后对酶解液进行超滤分离和真空冷冻干燥,采用FA-Phe-Gly-Gly为底物的酶活力检测法对不同大豆降压肽组分进行活性检测.结果表明三酶联合酶解效果最好,水解度(DH)及ACE抑制率高达32.24%和84.44%.  相似文献   

15.
为确定具有抗癌活性大豆多肽的分子量,对大豆抗癌肽粗提物进行超滤,采用MTT法(四噻唑蓝比色法)对得到的不同组分超滤液进行抗癌活性检测,初步确定分子量在5000~10000u范围的组分具有最高的抑癌活性,大豆抗癌肽的IC50为0.47mg/mL。用葡聚糖SephadexG-75凝胶柱对该组分进行进一步分离,收集各洗脱组分并进行抗癌活性研究。结果显示:组分A4具有最佳的抗癌活性,其IC50为0.37mg/mL。根据分子量标准曲线,得到其平均相对分子质量为6723u。  相似文献   

16.
以大豆分离蛋白(SPI)为原料,分别采用碱性蛋白酶、胰蛋白酶、风味蛋白酶对SPI进行酶解,测定水解度及ACE抑制率,结果表明碱性蛋白酶酶解液效果较好。采用响应曲面法对碱性蛋白酶酶解工艺参数进行优化,在此基础上采用双酶协同酶解和三酶联合酶解,然后对酶解液进行超滤分离和真空冷冻干燥,采用FA-Phe-Gly-Gly为底物的酶活力检测法对不同大豆降压肽组分进行活性检测。结果表明三酶联合酶解效果最好,水解度(DH)及ACE抑制率高达32.24%和84.44%。  相似文献   

17.
以大豆蛋白为原料,采用 Protamex 与 Neutrase 两种蛋白酶酶解,得到小分子多肽(分子量≤2300),进行了两种酶的作用条件比较.采用新方法测定小分子多肽含量,通过正交试验对大豆多肽复合酶解工艺条件进行试验分析,确定了大豆蛋白复合酶解的最佳工艺条件为:Protamex 酶与Neutrase 酶的比例为 6:4,pH7.0,底物浓度为 5%,酶解时间为 8 h,温度为 60℃.为进一步水解制备小分子大豆肽的研究具有一定的参考意义.  相似文献   

18.
应用固定化胰蛋白酶制备大豆肽的研究   总被引:4,自引:2,他引:4  
采用固定化胰蛋白酶水解大豆分离蛋白制备大豆低肽,对固定化胰蛋白酶水解工艺参数等进行了系统研究。结果表明:固定化胰蛋白酶的最适温度为60℃,最适pH为8.7,最佳底物浓度为2.0-3.0mg/mL,大豆分离蛋白的最佳流速为0.3mL/min,大豆分离蛋白的水解率达到45.6%,酶解液中大豆肽含量为1.462mg/mL。酶解液多肽分子量大部分在10000以下。  相似文献   

19.
以花生粕为原料,采用双酶法酶解制备活性肽,应用不同截留分子量的超滤膜对酶解液进行分离纯化,通过单因素试验探讨原料液pH值、操作压力和时间等因素对花生活性肽超滤分离膜通量的影响,利用响应曲面法对超滤工艺条件进行优化.结果表明,最佳超滤工艺参数:选用截留分子量10kD的超滤膜,原料液pH8.2,压力0.25MPa下,超滤38.9min,膜通量可达到27.68L/(min·m2).超滤滤出液中氨基氮含量提高到4.6倍,氨基氮总量回收率达到90%左右,实现了样品的分离纯化与初步浓缩.说明超滤分离花生粕活性肽具有快速、方便、条件温和、操作简单等优点.  相似文献   

20.
大豆多肽的降压活性及其相对分子质量分布研究   总被引:2,自引:0,他引:2  
采用以FAPGG为底物的酶活力检测法对由不同蛋白酶(碱性蛋白酶、胰蛋白酶、风味蛋白酶、木瓜蛋白酶和菠萝蛋白酶)水解制备的大豆多肽的降压活性进行了测定。结果表明,碱性蛋白酶、胰蛋白酶和风味蛋白酶三酶联合水解制备的大豆多肽具有较好的降压活性,其ACE抑制率达62.78%。经超滤发现,5kDa膜滤过液中多肽含量最多,占总量的73.44%,降压活性最强,其ACE抑制率达84.44%。最后,采用SephadexG-25凝胶色谱进一步分离纯化,得到5个峰,其相对分子质量在1 200以下的组分约占75%,其中相对分子质量在250—600左右的组分占47.6%,降压活性最强,ACE抑制率达92.15%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号