首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对于受高频、宽频带随机激励的复杂车辆结构动力学响应及其噪声辐射问题,传统的计算方法难以获得满意结果.采用统计能量分析(SEA)方法对某国产轿车的车内声场进行了建模、仿真研究和声贡献分析,并以此为基础进行了车内噪声的改进设计,分别讨论了地板阻尼层、侧窗玻璃厚度和吸声材料对车内噪声的影响.通过计算各个子系统闻的能量流动,分析车内噪声的产生机理,讨论了不同吸、隔声材料对车内噪声响应特性的影响,研究结果可为车内声学设计提供参考.  相似文献   

2.
分别建立某装载机驾驶室及室内声腔有限元模型,通过单点输入多点输出(single input and multiple output,简称SIMO)法模态试验验证了声振耦合模型的准确性,测取悬置点激励进行频率响应分析及室内噪声预测。对驾驶室进行声学灵敏度分析,采用声传递向量法对驾驶室进行声学板件贡献度分析并对关键板件进行形貌优化,同时添加橡胶阻尼材料抑制壁板振动,进行二次声压虚拟预测。结果表明,声学灵敏度分析可得到多阶关键声振耦合频率,声传递向量法板件贡献度分析能准确定位产生噪声峰值的关键板件,形貌优化及添加阻尼材料的方案降噪效果显著,室内总声压级降低了4.43dB。此方案系统地为低噪声车身设计提供了技术路线,减少了传统方案的主观性和重复性,缩短了研发周期,降低了研发成本。  相似文献   

3.
建立白车身有限元模型,利用实验模态验证模型的正确性.声腔模型和结构模型进行耦合,计算车内测点声压,在此基础上对车室壁板厚度,车身扭转刚度及吸声材料布置形式研究,以控制车内噪声为目标,得出改善车内噪声的参考方法.  相似文献   

4.
轿车车室声固耦合系统的模态分析   总被引:12,自引:1,他引:11  
车室声学模态分析是汽车NVH特性研究的重要内容,识别系统模态对避免声学共振、降低车内噪声有重要意义。利用有限元法建立某轿车车身结构和车室空腔模型,并建立了考虑结构与空气之间相互作用的车室声固耦合系统模型。列出三个系统的有限元方程式,使用MSC.Nastran软件对三个模型的模态进行仿真计算,对结构的模态频率和变形部位、空腔声学系统的声学模态频率和声压分布情况以及耦合系统中结构和声学空腔模态频率和振型的变化进行了详细分析。测量车内纵向对称面上的等声压线以验证仿真结果。结果表明:结构与空气的相互作用将改变原系统(车身结构或车室空腔)模态的频率和振型,并将引起另一个系统产生相应模式的振动;系统第一阶声学模态为纵向声学模态,其振型的试验结果与仿真结果在分布特点、变化趋势等方面符合较好。  相似文献   

5.
针对传统A计权声压级评价指标对噪声低频成分衰减较大,常常出现车内声压级达标,声品质不合格的问题。引入心理声学参数的响度参量,利用虚拟仿真技术分析评价车内声学特性。建立驾驶室声-固耦合有限元模型,结合试验激励数据,进行基于模态的声学响应计算。在Matlab平台上,建立车内声品质客观心理声学参数响度的计算模型,对比预测驾驶室内场点的声压级和响度分布,结合声压级和响度结构板块贡献量分析,研究声压级和响度参量评价驾驶室结构特性的差别并识别驾驶室主要噪声源。以此为基础指导优化驾驶室结构阻尼铺设位置,综合提高车内声学品质。  相似文献   

6.
以某乘用车气动噪声为研究对象建立了整车流体动力学模型,并用该模型提取车窗脉动压力,然后将该压力作为激励加载到车内声腔模型中对驾驶员耳旁噪声进行仿真分析,仿真结果与试验数据吻合。将车身表面Curle噪声源强度作为优化目标,采用离散伴随法进行灵敏度识别,进而确定后视镜、A柱截面、引擎盖为优化区域。采用哈默斯雷试验设计方法构建样本空间,利用网格自由变形技术参数化样本点模型,计算出对应的声功率值。运用Kriging插值法构建代理模型,使用多岛遗传算法对模型进行全局寻优。优化结果显示,与原模型相比,车窗表面声功率级最大值减小2 dB,驾驶员耳旁声压级下降0.7 dB(A)。  相似文献   

7.
发动机振动引起的车内噪声控制研究   总被引:18,自引:0,他引:18  
系统研究了某桥车发动机振动引起的车内噪声控制问题。通过试验分析,确定发动机二阶振动是引起车内噪声的主要原因,识别出发动机固体振动向车内传递的传递途径,并且确定对车内噪声有较大贡献的车身板件。在此基础上,通过对发动机、副下架橡胶支承元件弹性特性的修改,控制发动机振动向车内的传递,通过对车身顶棚结构板件的动力修改控制车身板件的振动。经样车试验得到满意的结果,证明了上述研究是十分成功的。  相似文献   

8.
高速列车头型气动外形关键结构参数优化设计*   总被引:2,自引:0,他引:2  
李明  刘斌  张亮 《机械工程学报》2016,52(20):120-125
降低列车运行阻力和气动噪声是提升高速列车速度能力和环境适应性的有效手段。针对气动阻力、气动噪声这两项优化目标,利用Isight软件建立了集参数化驱动建模、计算网格划分、气动计算、优化分析等步骤的高速列车新头型气动性能自动优化设计流程,运用基于多目标遗传算法NSGA-II的优化设计方法,对鼻尖高度、排障器前端伸缩量、转向架区域挡板倾角等关键设计变量进行了优化设计以及与气动阻力和气动噪声的相关性分析,在此基础上提出了综合性能较佳的新头型气动外形。通过计算结果可知,① 鼻尖高度对整车阻力和头车表面最大声功率均为正相关关系;② 转向架区域隔墙倾角对整车阻力和头车表面最大声功率影响的相关性最大;③ 通过优化转向架区域隔墙倾角可有效降低该处气动噪声的表面声功率。  相似文献   

9.
超高声速飞行器的动力学环境频域宽,使用有限元/边界元方法预示其振动响应存在困难。基于统计能量分析(Statistical energy analysis,SEA)理论建立某型高速飞行器声振耦合动力学模型,用理论解析和经验公式的方法确定各子系统的输入参数,以实际噪声试验条件作为飞行器SEA模型的输入激励,对飞行器舱内噪声声压级和子系统振动加速度响应进行预示,并与试验结果进行比较。结果显示,子系统振动加速度功率谱密度(Power spectral density,PSD)在中高频与试验结果基本一致,舱内声压在整个频段内误差小于3 d B,因此建立的动力学模型和采用的计算方法是可靠的,解决了有限元、边界元在中高频声振响应问题计算的局限性。通过传递路径分析寻找出舱内声场的主要来源,提出以损耗因子为设计变量的噪声控制与优化方法,利用遗传算法实现了这一非线性约束问题求解,为研究飞行器结构和复杂动力学环境以及飞行器降噪优化设计提供有效的手段。  相似文献   

10.
车身低噪声设计新方法   总被引:1,自引:0,他引:1  
为降低车内低频噪声而改进车身结构时,现有方法往往需要较长周期,因此研究一种可快速、准确定位车身结构薄弱处,以及明确车身结构刚度调整方向的车身低噪声设计新方法。将一般腔体结构的内部声场计算公式分解为5个部分,并讨论这5个部分的特点,确定进行声压响应幅度判定参数研究时,采用的6种关键组合。以含一个弹性面的刚性长方体结构声腔耦合系统为对象,讨论6种关键组合的关系;分析发现振型耦合系数、频率重叠系数、结构振型在激励点处分量等三者的乘积能够完全体现声压响应信息,可作为声压响应幅度判定参数。详细分析声压响应幅度判定参数的特点,可满足预期研究目标;基于该参数,提出一种车身结构低噪声设计的新方法。利用该新方法,对某轿车车内低频噪声进行优化,进一步的频率响应计算结果表明,车身结构优化后驾驶员测点声压级平均降低3 dB,最大降低10 dB。  相似文献   

11.
为研究动车组牵引变压器冷却风机的气动噪声特性,针对某型冷却风机进行气动噪声试验,得到在不同测点处的声压级和频谱特性。同时,针对该型风机建立仿真模型,模型中考虑电动机、支架等实际结构,结合计算流体力学方法和Lighthill声学比拟理论,对冷却风机的非定常流动特性和远场声场进行数值仿真,与试验数据进行对比。结果表明,通过大涡模拟得到的冷却风机噪声主要阶次与试验具有较好的一致性;在基于风机侧面评价点声压功率谱密度所估算声功率贡献量中,宽频带噪声占比为74.76%,是后续减振降噪的重点;阶次噪声占比为25.24%,结合仿真分析发现,阶次的主要来源为进风口动叶轮和出风口动叶轮处气流脉动压力所形成的偶极子声源,其中进风口第33阶次和出风口第10阶次最为重要。所得分析结果可为该型风机的气动性能和气动噪声的改进提供切实可行的参考依据。  相似文献   

12.
基于简化模型的头车转向架气动噪声特性研究   总被引:2,自引:0,他引:2  
由于高速列车气动噪声形成的机理和分析较为复杂,目前的检测系统还不能从列车高速运行状态下噪声测试中做出清楚的分辨,通过计算流体力学方法研究高速列车头车转向架气动噪声特性。建立经过简化的转向架、头车未安装转向架的简化车身和头车安装简化转向架的车身三种计算模型,分析列车运行200 km/h,300 km/h速度下简化转向架周围流场与气动声场特性,进一步分析此速度下简化转向架对头车车外气动噪声的影响。分析结果显示转向架周围有周期性的漩涡生成、脱落现象,气动噪声在其周围的辐射规律呈现偶极子分布。转向架车轴和构架横梁的上、下表面为偶极子声源集中的部位。前轮对在垂直与气流方向的竖直平面上和平行于气流方向的竖直平面上引起的噪声比后轮对大,在平行于气流的水平平面上比后轮对小。两个速度下,转向架气动噪声分布规律大致相同,幅值有差别。转向架使头车车外噪声显著增高,转向架附近噪声增幅尤为明显。行车速度200 km/h时,简化转向架能使头车车外气动噪声幅值增大3~5 d BA,行车速度300 km/h时,增幅为5~8 d BA。  相似文献   

13.
为探究改变叶顶间隙对矿用对旋式轴流风机气动噪声的影响,建立不同叶顶间隙的风机三维模型,并结合风机性能试验验证模型的正确性。利用Fluent对风机进行定常模拟、非定常模拟和噪声预估,分析了声功率级和声压级随叶顶间隙的变化情况。结果表明:叶根与轮毂交界处、叶顶间隙处和相邻两叶片中间部位的声功率级随间隙的增加而增大,且叶顶处吸力面声功率级高于压力面。不同间隙下风机的A级声压值总体上呈先急剧下降后上升再逐渐下降的趋势,间隙变大后,风机在各监测点处的A级声压值随之增大。与高频处相比,间隙对中低频处的A级声压值影响更加显著。  相似文献   

14.
利用有限元法建立某重卡驾驶室车身结构和车室空腔模型,并建立了考虑结构与空气之间相互作用的车室声固耦合系统模型。使用Nastran软件对三个模型的模态进行仿真计算,对结构的模态频率和变形部位、空腔声学模态频率和声压分布情况以及耦合系统中结构和声学空腔模态频率和振型的变化进行了详细分析,为下一步的车身设计和改进提供了依据。  相似文献   

15.
基于声学有限元法和声固耦合理论,建立了箱体结构的有限元模型,采用有限元AN-SYS软件,针对不同厚度的壁板以及不同位置的加筋处理两种情况,对箱体结构振动与内部噪声进行了分析研究,确定部分结构参数的改变对箱体内部噪声的影响规律.  相似文献   

16.
陈剑  蒋丰鑫  肖悦 《中国机械工程》2014,25(15):2124-2129
以某挖掘机驾驶室为例,建立结构有限元与声学边界元模型,基于频域逆矩阵方法求解工况下的激励载荷,利用基于模态的强迫响应法求得该激励下驾驶室振动速度响应。以此速度响应为边界条件,将声学传递向量(ATV)法与边界元法相结合计算驾驶员右耳处的声压,并进行了试验验证。对峰值频率处驾驶室面板声学贡献量进行计算,确认贡献显著的板件,对相应板件进行形貌优化和添加阻尼处理,结果表明,驾驶室内声压在对应峰值位置有较明显的下降。  相似文献   

17.
利用阻尼材料改善驾驶室声学特性的研究   总被引:2,自引:0,他引:2  
为改善某款商用车驾驶室声学特性,建立该驾驶室的声固耦合有限元模型,通过频率响应分析,得到车内的声学响应。对81 Hz处声压峰值进行声学结构模态参与因子分析和板件贡献分析。对贡献最大的板件进行自由阻尼处理。为减少阻尼材料使用量,将阻尼材料体积作为约束条件,阻尼材料单元相对密度作为设计变量,以贡献最大的结构模态所对应的模态阻尼比最大化为优化目标,基于优化准则算法用MSC.Nastran的直接矩阵提取程序(Direct matrix abstraction program,DMAP)语言编制拓扑优化程序,对阻尼材料在驾驶室上的分布进行优化。优化后阻尼材料的体积减小40%,目标模态的模态阻尼比降低5.2%。根据优化结果粘贴阻尼材料,使驾驶员右耳处声压和乘员右耳处声压在81 Hz附近分别降低11.2 dBA和10.7 dBA,其他峰值处声压变化不大。  相似文献   

18.
为解决铁路列车在轻量化、高速化的过程中带来的一系列车辆振动和噪声问题,针对已有车体结构,重点研究了地板减振器参数变化对改善车辆隔声性能的影响。首先,开展车内噪声特性及车内噪声源识别测试,探明车内噪声的显著频段、主要声源源强及分布特性;其次,对比分析地板内部安装减振器前后车辆噪声特性的变化,明确地板减振器的降噪效果;最后,运用基于声学实验室测试的方法对地板减振器各类参数开展研究和优化设计。研究表明:地板结构为车内噪声主要传声结构和声源分布区域;安装地板减振器可以有效提高地板结构的隔声量,从而达到抑制车内噪声的目的;改变地板减振器刚度、邵氏A硬度、阻尼、载重及数量均对地板结构隔声性能有一定影响。本研究可为轨道车辆减振降噪设计提供依据。  相似文献   

19.
秦登  戴志远  周宁  李田 《中国机械工程》2022,33(20):2509-2519
为研究受电弓下沉对其气动行为和声学行为的影响,建立了考虑安装平台的高速受电弓计算模型,基于计算流体力学和声学类比理论,对受电弓的气动和声学行为展开数值模拟。受电弓下沉高度分别设为100、200、300、400和500 mm,通过风洞试验验证了数值计算方法的合理性。仿真结果表明:随着受电弓安装平台下沉高度的增大,绝缘子和底架迎风面正压减小,受电弓气动阻力减小;安装平台气动阻力先增大后减小,通过优化腔体过渡倾角可显著减小安装平台所产生的气动阻力;当安装平台下沉高度为300 mm、腔体倾角为30°时,受电弓开口、闭口运行时其气动阻力分别减小2.0%、1.8%,整车阻力分别减小1.4%和1.1%;受电弓气动噪声具有明显的主频特性,主要频率约为330 Hz,能量主要集中在400~2500 Hz范围内;安装平台下沉后,绝缘子和底架周围流体流速减小,绝缘子和底座的表面声功率显著降低;安装平台下沉300 mm时,受电弓远场气动噪声最大声压级减小2.02 dBA,平均声压级减小1.31 dBA;受电弓下沉可改善其气动和声学性能。  相似文献   

20.
针对某型齿轮箱,提出一种基于声学贡献度分析的减振降噪设计方法.建立了齿轮箱有限元模型,计算其结构模态.将齿轮箱有限元网格作为结构网格和声学边界网格,在LMS Virtual.Lab下用边界元法求解真实工况激励下的辐射声场.利用声学贡献度分析,找到贡献度最大的面板,修改其设计参数.修改结构后,声场中某点噪声峰值降低8.2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号