首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为研究高速列车转向架区域的气动性能及流场规律,建立列车空气动力学模型,基于SST k-?两方程模型对运行速度分别为250 km/h、300 km/h和350 km/h的高速列车气动性能进行了数值模拟,分析动车及拖车转向架各部件对列车气动性能的影响。计算结果表明:列车运行速度对转向架阻力的影响是显著的,其中对头车转向架影响最大;头车转向架的阻力占总转向架阻力的54.9%,其中构架和轮对分别占35.6%和46.5%,部分部件由于前后压差形成负阻力;拖车转向架的流场结构比动车转向架更加复杂,闸片等部件对转向架区域的流场结构有显著影响;转向架区域外形和设备舱隔墙倾角也会影响其流场结构,斜角入口比直角入口的流场结构更加复杂。  相似文献   

2.
《机械设计与制造》2017,(Z1):137-140
随着运行速度的提高,高速列车的通过噪声显著增加,由于气动噪声与列车运行速度的4~8次方成正比,气动噪声有可能成为高速列车的主要噪声源。基于Lighthill声类比理论的混合方法,结合完美匹配层边界条件和高阶单元,利用有限元法对CRH380A型高速列车远场气动噪声特性进行了计算分析,得到了列车远场噪声的分布情况、影响区域和传播方向。结果表明:高速列车表面偶极子噪声源由车身向列车四周辐射,随着距车身距离的增加,辐射噪声不断衰减;随着频率的增加,高速列车周围各处噪声均下降,高声压级噪声的区域缩小,声压级分布渐趋于均匀;列车运行速度为300km/h时,标准测点处的噪声时域等效声压级为87.11dB,与实验实测值接近;不同运行速度下,标准测点处的噪声在很宽的频带内存在;随着运行速度的增加,标准测点处噪声声压级在频域和时域内都增加。  相似文献   

3.
针对列车提速所引起的铁路噪声问题,尤其是在高速运行情况下占主导的气动噪声问题。通过对列车模型的气动噪声进行稳态数值模拟分析,探究列车不同速度运行时的表面压力分布情况,从而为列车的车身设计提供参考。在Lighthill声学理论的基础上,采用常用的k-ε模型以及SIMPLE算法进行计算,分别对CRH3列车在300km/h和350 km/h的运行速度下的稳态模拟结果进行分析,研究不同速度下列车头部各部分的流场特征。  相似文献   

4.
针对高速列车受电弓区域气动噪声问题,采用大涡模拟和FW-H声学模型重点对列车在250 km/h、350 km/h运行时受电弓导流罩气动噪声进行数值模拟,建立了车体+受电弓导流罩的计算模型,分析导流罩表面偶极子声源分布和气动噪声频谱特性。研究结果表明:350 km/h下导流罩表面气动噪声整体大于250 km/h;两种速度下导流罩表面偶极子声源分布规律在频域表现一致:在高频阶段声压级明显低于低频阶段,5 000 Hz下最大声压级仅为20 Hz下的40%;导流罩表面最大声压级都诱发于凹腔与后引导面的过渡处,20 Hz下分别可达136 dB、143 dB。此外,导流罩近场和远场气动噪声频谱曲线相似,均是一种宽频噪声,且能量主要集中在150~950 Hz,对后续更高速级列车受电弓导流罩降噪结构设计和隔声材料的选取有一定实际参考意义。  相似文献   

5.
高速列车转向架区的噪声包含气动噪声、轮轨噪声和设备(结构)噪声,为了将这几种噪声进行分离,将工况传递路径分析(operational transfer path analysis,简称OTPA)技术用于转向架区气动噪声分离。低速运行工况,转向架区的噪声主要是轮轨噪声和由电机、轴箱、齿轮箱等动力设备产生的结构噪声,气动噪声很小可以忽略不计,通过低速运行工况的传递路径分析可以得到轮轨声和结构声路径的传递函数;高速运行工况,转向架区目标点的噪声是3种噪声贡献叠加的结果,在假定轮轨噪声和结构噪声传递函数不随速度变化的前提下,用低速运行工况下的传递函数可以求得轮轨噪声和结构噪声的贡献量,与目标点总值比较,差异部分即为气动噪声的贡献量。分离结果表明,气动噪声占主导的速度转折点出现在200km/h,350km/h速度级下气动噪声的贡献量达到60%,轮轨噪声的贡献量约为30%,仍不可忽略。  相似文献   

6.
高速列车转向架区的噪声包含气动噪声、轮轨噪声和设备(结构)噪声,为了将这几种噪声进行分离,将工况传递路径分析(operational transfer path analysis,简称OTPA)技术用于转向架区气动噪声分离。低速运行工况,转向架区的噪声主要是轮轨噪声和由电机、轴箱、齿轮箱等动力设备产生的结构噪声,气动噪声很小可以忽略不计,通过低速运行工况的传递路径分析可以得到轮轨声和结构声路径的传递函数;高速运行工况,转向架区目标点的噪声是3种噪声贡献叠加的结果,在假定轮轨噪声和结构噪声传递函数不随速度变化的前提下,用低速运行工况下的传递函数可以求得轮轨噪声和结构噪声的贡献量,与目标点总值比较,差异部分即为气动噪声的贡献量。分离结果表明,气动噪声占主导的速度转折点出现在200 km/h,350 km/h速度级下气动噪声的贡献量达到60%,轮轨噪声的贡献量约为30%,仍不可忽略。  相似文献   

7.
高速列车轮对位于转向架舱外部分直接受到来流冲击,产生较大气动噪声。运用涡声理论和声比拟方法,基于列车单轮对和串列双轮对简化模型,计算分析轮对周围流动与气动噪声特性。结果表明:单轮对工况下轮对周围流动分离与流体相互作用使得车轴尾流内产生了规则的交替涡脱落以及车轮尾流内形成了不同尺度的不规则涡;轮对近场四极子噪声中,体偶极子声源为主要声源,体四极子声源相对较弱;远场气动噪声预测与声学风洞测试结果吻合良好,轮对表面压力脉动诱发的面偶极子噪声为主要声源;轮对远场辐射噪声的主频和第一谐频值分别对应于轮对升力和阻力主频,第一谐频值为主频值两倍;与车轮相比,车轴部位产生的气动噪声较高;轮对声辐射指向性为垂向偶极子形状,旋转效应使得轮对噪声级幅值比静止轮对增加约2 dB。双轮对工况下,前轮对流场以及气动噪声特性与单轮对工况相似,后轮对在前轮对尾流作用下,气动噪声辐射频带加宽,强度减弱,指向呈多向性。  相似文献   

8.
由于地域及环境的限制,高速铁路采用多种路基结构如平直地面、不同高度路堤、高架桥等,当列车运行在路堤及高架桥上时,车体周围的绕流流场比平直地面更加复杂。在强横风的作用下,不同的路基结构上的高速列车横风气动特性存在明显差异,不合理的路基结构将影响列车的横风安全性。同时列车结构复杂,转向架、受电弓等都对列车的流场特性有重要作用,过于简化的短编组列车外形不能够精细反映列车的真实气动特性。为研究典型路基结构对高速列车横风气动特性的影响,以9编组动力集中型高速列车实车为研究对象,考虑风挡、转向架、受电弓等细节特征,对列车运行速度为200 km/h,横风速度分别为20 m/s、30 m/s、35 m/s、40 m/s,路基结构分别为平直地面、3 m路堤、6 m路堤、高架桥等四种场景下的高速列车空气动力学性能进行了仿真计算和对比,分析了不同路基地面条件下列车的横风气动特性的差异及规律,为横风条件下复杂路基结构的列车运行安全控制提供了参考。  相似文献   

9.
与明线运行相比,隧道内的高速列车车内噪声将明显增加。通过线路试验,对我国某型高速列车以160~350 km/h速度在明线和隧道运行时的车内振动噪声进行测试分析。掌握两种线路下的车内振动和噪声、车身表面气动噪声、转向架区域振动和噪声特性及其随速度的变化规律;采用50通道球形声阵列,识别两种线路下的车内主要噪声源,并分析噪声源的车内区域贡献率,进而在此基础上研究两种线路下的车内声振传递特性。结果表明,两种线路下车内噪声频谱差异主要体现在315~2 000 Hz,各测点不同线路的声压级差值与运行速度相关性较小,车内噪声受轮轨噪声激励影响相对明显。对于客室中部,列车350 km/h匀速运行时,隧道段列车顶板和客室后方贡献率分别增加4.0%和3.0%,地板贡献率降低8.6%,差异频段主要体现在63~160 Hz。对于侧墙区域,明线段车内低频噪声主要来自侧墙的振动,而在隧道时,车内低频噪声则主要来自于侧墙车身表面的气动激励。客室内噪声总值和频谱分布的差异在隧道运行情况下会减小,现有更关注客室端部噪声控制的传统认识,在列车隧道运行下,需要同样重要地关注和对待客室中部区域。  相似文献   

10.
高速列车头型气动外形关键结构参数优化设计*   总被引:2,自引:0,他引:2  
李明  刘斌  张亮 《机械工程学报》2016,52(20):120-125
降低列车运行阻力和气动噪声是提升高速列车速度能力和环境适应性的有效手段。针对气动阻力、气动噪声这两项优化目标,利用Isight软件建立了集参数化驱动建模、计算网格划分、气动计算、优化分析等步骤的高速列车新头型气动性能自动优化设计流程,运用基于多目标遗传算法NSGA-II的优化设计方法,对鼻尖高度、排障器前端伸缩量、转向架区域挡板倾角等关键设计变量进行了优化设计以及与气动阻力和气动噪声的相关性分析,在此基础上提出了综合性能较佳的新头型气动外形。通过计算结果可知,① 鼻尖高度对整车阻力和头车表面最大声功率均为正相关关系;② 转向架区域隔墙倾角对整车阻力和头车表面最大声功率影响的相关性最大;③ 通过优化转向架区域隔墙倾角可有效降低该处气动噪声的表面声功率。  相似文献   

11.
高铁因线路形式不同使得其车外噪声特性有差异。为研究桥梁和路堤两种主要线路形式处的高速列车车外噪声特性,参考ISO 3095标准,使用78通道轮辐式声阵列、基于反卷积波束形成算法,对高速列车进行车外声源识别测试,使用自由场麦克风,对高速列车进行通过噪声测试,对比研究不同行车速度下两种线路形式处的高速列车车外噪声特性。结果表明,相同运行情况下,路堤段的通过噪声要比桥梁段的高0.1 dBA到1.8 dBA,且此差值会随列车运行速度的增加而增长。从车外声源分布特性来看,无论是桥梁段还是路堤段,300 km/h匀速运行时,高速列车的受电弓区域噪声均是最为显著的,其次是转向架区域。在桥梁段运行时,转向架区域噪声要略高于路堤段,这可能与桥梁段轨道整体刚度有关。在路堤段运行时,列车车身表面的噪声更大,这可能和路堤段的声音的地面反射有关。随列车运行速度的提高,两种线路对应的受电弓噪声差值逐渐减小,而转向架区域噪声的差值基本不随速度变化。  相似文献   

12.
张亮  张继业  李田 《机械工程学报》2017,53(22):152-159
为改善高速列车明线运行时的气动性能,基于伴随方法和径向基函数网格变形技术,开展高速列车头型气动优化设计。采用径向基函数网格变形技术,避免列车头型优化过程中的网格重复生成,提高头型优化的效率。通过伴随方法求解目标函数对列车头型的敏感度,无须定义任何的头型设计变量,避免人为指定设计变量对优化结果的影响。将网格变形技术、伴随方法及计算流体动力学(Computational fluid dynamic,CFD)方法相结合,构建高速列车头型优化设计流程,选取整车气动阻力和尾车气动升力为优化目标,对高速列车头型进行多目标气动优化设计。结果表明:伴随方法可以有效地应用于高速列车的头型优化;优化后,在满足约束条件的情况下,列车的整车气动阻力减小2.83%,尾车气动升力减小25.86%;气动阻力减小主要位于头尾车流线型部位,中间车和头尾车车体气动阻力基本保持不变;尾车气动升力减小主要位于流线型部位,尾车车体向下的升力绝对值也有所减小。  相似文献   

13.
单节八轴机车转向架动力学研究   总被引:1,自引:0,他引:1  
针对B0B0-B0B0轴式的单节八轴机车转向架结构,提出一种采用中间构架连接两台B0转向架实现三系悬挂支撑车体,并应用单牵引杆直接连接两轴构架与车体传递纵向力的结构形式。该方案结构简单并能实现高粘着利用率,具有可行性和良好的动力学性能。三系悬挂使得机车车体具有优良的平稳性,同速度等级和轴重的2C0机车进行对比计算,机车R300 m小半径曲线通过时,机车导向轮对轮轴横向力及导向轮轮缘磨耗因子相对2C0机车减小35%左右;R800 m半径曲线通过时,轮轴横向力减小15%,轮缘磨耗因子减小23%。  相似文献   

14.
李晓东  何忠韬 《山西机械》2012,(1):13-14,17
以某动车组转向架车轴为研究对象,建立其有限元模型。按照JIS标准,应用CAD/CAE软件对200km/h速度等级的高速列车车轴强度进行计算和强度分析。  相似文献   

15.
The low-floor bogie is a prior technology in countries and companies that want to develop the tram. The Low-floor tram (LFT), which includes low-floor bogies, is easy to embark and disembark because of the low floor height. In addition, it can be driven on urban as well as rural tracks. Furthermore, emissions such as NOx and SOx can be reduced. Due to these advantages, this innovative technology is expected to change the public transport system. To improve utilization in a downtown area, the technology for the low-floor bogie should satisfy conditions of a high-speed of over 80 km/h and minimum radius within a 25 mR curve for smooth running on a track that has a severe turning radius. Moreover, the wheelset should not be located in the bogie, and the components inside the bogie need to be wellarranged to satisfy the full low-floor condition. In this study, to develop an over-80 km/h class high-speed low-floor bogie that can be driven safely on a 25 mR curved track, a conceptual design of the LFT multibody dynamics model was constructed and dynamic characteristics were assessed by dynamic analysis. The modeling modification with Independently rotating wheels (IRW) needed to steer actively through semi-active suspension and the optimization using Design of experiments (DOE) were then performed. Through DOE method, the optimum combination of design parameters could be obtained and, the driving performances such as ride stability, comfort and safety of the LFT could then be improved about 7 %. The results of this work are available to detail design and development of LFT.  相似文献   

16.
秦登  戴志远  周宁  李田 《中国机械工程》2022,33(20):2509-2519
为研究受电弓下沉对其气动行为和声学行为的影响,建立了考虑安装平台的高速受电弓计算模型,基于计算流体力学和声学类比理论,对受电弓的气动和声学行为展开数值模拟。受电弓下沉高度分别设为100、200、300、400和500 mm,通过风洞试验验证了数值计算方法的合理性。仿真结果表明:随着受电弓安装平台下沉高度的增大,绝缘子和底架迎风面正压减小,受电弓气动阻力减小;安装平台气动阻力先增大后减小,通过优化腔体过渡倾角可显著减小安装平台所产生的气动阻力;当安装平台下沉高度为300 mm、腔体倾角为30°时,受电弓开口、闭口运行时其气动阻力分别减小2.0%、1.8%,整车阻力分别减小1.4%和1.1%;受电弓气动噪声具有明显的主频特性,主要频率约为330 Hz,能量主要集中在400~2500 Hz范围内;安装平台下沉后,绝缘子和底架周围流体流速减小,绝缘子和底座的表面声功率显著降低;安装平台下沉300 mm时,受电弓远场气动噪声最大声压级减小2.02 dBA,平均声压级减小1.31 dBA;受电弓下沉可改善其气动和声学性能。  相似文献   

17.
The resonance of the flexible vibration of car body, which has not been detected before on a passenger coach, occurred recently on a high-speed Electric multi units (EMU) when the train was running at 300 km/h on Beijing-Shanghai line. In this investigation, the force transmission from track to car body via suspensions is elaborated first with possibly induced factors briefly discussed. Both the measurements and experiments in field and in laboratory were conducted to evaluate the resonances and the excitation as well as transmission. Moreover, a three-dimensional railroad vehicle model was built in a computational non-linear Multibody system (MBS) framework, in which the car body flexibility was modeled using Finite element (FE) method. The model was validated and shows good agreements with measurements. Furthermore, the measured wheel and rail profiles were used to analyze the wheel/rail interaction for both new and worn states. The effects of the wheel-rail contact conditions on stabilities, dynamics and riding comforts were also examined. Feasible solutions were promoted to avoid the resonance and following by validating tests. It shows that the high frequency excitation arises from the hunting motion of bogie that closes to the modals of the car body, leads to the resonance of the structure of the car.  相似文献   

18.
Noise is one of the key issues in the operation of high-speed railways, with sound source localisation and its transfer path as the two major aspects. This study investigates both the exterior and interior sound source distribution of a high-speed train and presents a method for performing the contribution analysis of airborne sound with regard to the interior noise. First, both exterior and interior sound source locations of the high-speed train are identified through in-situ measurements. Second, the sound source contribution for di erent regions of the train and the relationships between the exterior and interior noises are analysed. Third, a method for conducting the contribution analysis of airborne sound with regard to the interior noise of the high-speed train is described. Lastly, a case study on the sidewall area is carried out, and the contribution of airborne sound to the interior noise of this area is obtained. The results show that, when the high-speed train runs at 310 km/h, dominant exterior sound sources are located in the bogie and pantograph regions, while main interior sound sources are located at the sidewall and roof. The interior noise, the bogie area noise and the sound source at the middle of the coach exhibit very similar rates of increase with increasing train speed. For the selected sidewall area, structure-borne sound dominates in most of the 1/3 octave bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号