首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
研究了三种典型的碳化硅光学材料CVD SiC、HP SiC以及RB SiC的材料去除机理与可抛光性,并对其进行了超光滑抛光试验。在分析各种材料制备方法与材料特性的基础上,通过选择合理的抛光工艺参数,均获得了表面粗糙度优于Rq=2nm(采样面积为0.71mm×0.53mm)的超光滑表面。试验结果表明:研磨过程中,三种碳化硅光学材料均以脆性断裂的方式去除材料,加工表面存在着裂纹以及材料脱落留下的缺陷;抛光过程中,CVD SiC主要以塑性划痕的方式去除材料,决定表面粗糙度的主要因素为表面微观划痕的深度;HP SiC同时以塑性划痕与晶粒脱落的形式去除材料,决定表面粗糙度的主要因素为碳化硅颗粒大小以及颗粒之间微孔的尺寸;RB SiC为多组分材料,决定其表面粗糙度的主要因素为RB SiC三种组分之间的去除率差异导致的高差。

  相似文献   

2.
纳米氧化硅在玻璃基片表面亚纳米级抛光中的应用   总被引:4,自引:0,他引:4  
为满足先进电子产品对玻璃基片表面超光滑的要求,制备了一种纳米氧化硅抛光液,并研究了氧化硅粒子大小、抛光时间等参数对玻璃基片抛光后表面粗糙度、材料去除速率的影响。ZYGO形貌仪表明,采用纳米氧化硅抛光液,可以使玻璃表面粗糙度达到0.5 nm左右。AFM表明,抛光后的玻璃基片表面超光滑且无划痕等微观缺陷。  相似文献   

3.
为满足电子半导体等领域对SiC超光滑、无损伤和材料高效去除的要求,提出了电助光催化抛光SiC的新方法。研究了光催化剂种类及其pH值对抛光液氧化性和抛光效果的影响,讨论了材料的去除机理。结果表明:以p25型TiO2为光催化剂配制抛光液所获得的最大氧化还原电位为633.11 mV,材料去除率为1.18 μm/h,表面粗糙度Ra=0.218 nm;抛光后SiC表面氧化产物中,Si-C-O、Si-O和Si4C4O4的含量明显增加,SiC表面被氧化并被机械去除是主要的材料去除方式。  相似文献   

4.
基于集群磁流变效应超光滑平面抛光理论及研制的试验装置,对单晶SiC基片进行了平面抛光试验研究。研究结果表明,金刚石磨料对单晶SiC基片具有较好的抛光效果;加工间隙在1.4mm以内抛光效果较好,30min抛光能使表面粗糙度值减小87%以上;随着加工时间的延长,表面粗糙度越来越小,加工30min时粗糙度减小率达到86.54%,继续延长加工时间,加工表面粗糙度趋向稳定。通过优化工艺参数对直径为50.8mm(2英寸)6H单晶SiC进行了集群磁流变平面抛光,并用原子力显微镜观察了试件加工前后的三维形貌和表面粗糙度,发现经过30min加工,表面粗糙度Ra从72.89nm减小至1.9nm,说明集群磁流变效应超光滑平面抛光用于抛光单晶SiC基片可行有效且效果显著。  相似文献   

5.
针对化学气相沉积碳化硅平面反射镜的材料特性与技术要求,制定了"传统研抛 离子束抛光"的工艺方法,并在一块口径为100mm的试件上进行了验证。首先基于加工效率和亚表面损伤选择合理的工艺参数,并采用磁流变抛光斑点法测量各道工序的亚表面损伤,并以此为依据规划下一道工序的材料去除量;然后分析抛光表面粗糙度的影响因素,在此基础上对抛光工艺参数进行优化,获得表面粗糙度均方根方差值为0.584nm的超光滑表面,并控制工件的面形误差;最后采用离子束抛光进行精度提升,使工件的低频和中频误差均大幅下降,最终工件的面形精度均方根方差值达到0.007λ(λ=632.8nm),表面粗糙度均方根方差值为0.659nm。  相似文献   

6.
光学材料无磨料低温抛光的试验研究   总被引:14,自引:0,他引:14  
将无磨料抛光与低温抛光结合起来,首次提出一种可获得原子级超光滑表面的新方法——无磨料低温抛光。这种新工艺可使光学材料获得Ra<1nm的原子级超光滑表面,通过大量的试验,系统研究了抛光盘水质、抛光前修盘时间、抛光压力和偏心等对已加工表面粗糙度的影响规律。结果表明,这种抛光工艺能获得原子级的超光滑表面。  相似文献   

7.
一种光学材料高效超精密加工方法   总被引:4,自引:0,他引:4       下载免费PDF全文
提出了结合磁流变光整加工(MRF)与在线电解修整(ELID)磨削对各种光学材料进行超精密加工的方法,即采用ELID磨削进行预抛光以获得高质量表面,然后采用MRF进行精密抛光以进一步减小表面粗糙度和形状误差.利用该组合工艺对BK7玻璃、硅晶玻璃、碳化硅等光学材料进行了超精密加工实验,可以在短时间内使光学材料工件表面得到亚纳米级的表面粗糙度和峰谷值为λ/20(λ为单位波长,λ=632.8nm)的形状精度.  相似文献   

8.
射流抛光技术能够获得原子级粗糙度和无损伤表面,已成为最具发展潜力的超光滑表面加工技术之一,而冲击角度是影响抛光效果的一个重要参数。利用自主研制的射流抛光实验机,通过定点冲击实验,研究不同冲击角度下的被加工表面材料去除形貌及去除量。实验结果表明,随着冲击角度的减小,材料去除形状愈发不对称,材料去除率逐渐降低,而最大去除深度出现非单调变化。结合冲击射流流场分布和颗粒碰撞角度的变化,分析冲击角度对材料去除特性的影响机制,发现射流冲击角度对材料去除的影响主要归因于射流中颗粒碰撞角度及颗粒碰撞次数的变化;颗粒碰撞角度越大,碰撞次数越多,则材料去除量越大;两者的综合作用影响着材料去除量及材料去除分布。  相似文献   

9.
谭刚 《中国机械工程》2005,16(Z1):341-343
通过自制纳米CeO2超细粉体,并配制成抛光液对硅片进行化学机械抛光,研究了纳米CeO2抛光料对硅片的抛光效果,解释了纳米级抛光料的化学机械抛光原理.实验结果表明:由于纳米抛光料粒径小,切削深度小,故材料去除采用塑性流动方式.使用纳米CeO2抛光料最终在1μm的范围内达到了微观表面粗糙度Ra为0.124nm的超光滑表面,满足了产品的要求.  相似文献   

10.
应用电子束蒸发硅,霍尔离子源电离甲烷,并辅助沉积的方法在反应烧结碳化硅(RB SiC)基底上沉积了碳化硅(SiC:H)改性薄膜.X射线衍射(XRD)测试表明制备的碳化硅改性薄膜为α相.通过控制沉积速率,制备了硬度为9.781~13.087GPa,弹性模量为89.344~123.413GPa的碳化硅改件薄膜.比较同样条件下镀制银膜的抛光良好微晶玻璃和经过精细抛光的改性 RB SiC,结果表明两者反射率相近;附着力实验表明,制备的薄膜和基底结合良好;在温度冲击实验下,制备的薄膜无龟裂和脱落.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号