首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
机械仪表   5篇
  2014年   1篇
  2009年   1篇
  2008年   3篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
研究了三种典型的碳化硅光学材料CVD SiC、HP SiC以及RB SiC的材料去除机理与可抛光性,并对其进行了超光滑抛光试验.在分析各种材料制备方法与材料特性的基础上,通过选择合理的抛光工艺参数,均获得了表面粗糙度优于Rq=2nm(采样面积为0.71mm×0.53mm)的超光滑表面.试验结果表明:研磨过程中,三种碳化硅光学材料均以脆性断裂的方式去除材料,加工表面存在着裂纹以及材料脱落留下的缺陷;抛光过程中,CVD SiC主要以塑性划痕的方式去除材料,决定表面粗糙度的主要因素为表面微观划痕的深度;HP SiC同时以塑性划痕与晶粒脱落的形式去除材料,决定表面粗糙度的主要因素为碳化硅颗粒大小以及颗粒之间微孔的尺寸;RB SiC为多组分材料,决定其表面粗糙度的主要因素为RB SiC三种组分之间的去除率差异导致的高差.  相似文献   
2.
研究了三种典型的碳化硅光学材料CVD SiC、HP SiC以及RB SiC的材料去除机理与可抛光性,并对其进行了超光滑抛光试验。在分析各种材料制备方法与材料特性的基础上,通过选择合理的抛光工艺参数,均获得了表面粗糙度优于Rq=2nm(采样面积为0.71mm×0.53mm)的超光滑表面。试验结果表明:研磨过程中,三种碳化硅光学材料均以脆性断裂的方式去除材料,加工表面存在着裂纹以及材料脱落留下的缺陷;抛光过程中,CVD SiC主要以塑性划痕的方式去除材料,决定表面粗糙度的主要因素为表面微观划痕的深度;HP SiC同时以塑性划痕与晶粒脱落的形式去除材料,决定表面粗糙度的主要因素为碳化硅颗粒大小以及颗粒之间微孔的尺寸;RB SiC为多组分材料,决定其表面粗糙度的主要因素为RB SiC三种组分之间的去除率差异导致的高差。

  相似文献   
3.
四连杆机构的驱动力矩和等效转动惯量是确定驱动电机参数的重要依据。采用SolidWorks软件建立了四连杆机构及所带负载的实物模型,并将其导入ADAMS软件进行运动学和动力学仿真,分析了驱动力矩和等效转动惯量在运动周期内的变化规律,为确定驱动电机参数提供了依据。实践表明,采用该方法确定驱动电机参数比采用传统的解析方法更具优势,可极大地减少工作量。  相似文献   
4.
基于多体系统理论的非球面磨削误差模型与补偿技术   总被引:4,自引:0,他引:4  
为提高大中型非球面的磨削精度,从而提高非球面的加工效率,研究轴对称非球面磨削过程的误差模型,并对误差进行补偿.运用多体系统理论,基于一阶线性模型,建立非球面磨削成形的统一误差模型,并且推导各种误差对于最终面形误差的传递函数.基于传递函数特征相似误差集中补偿的方法,将所有趋势项误差转化为砂轮对刀误差以及砂轮形状误差进行补偿,并建立实用补偿模型,从而避免求解、校正各项具体误差.试验结果表明,建立的误差模型和辨识模型正确,可以使面形误差收敛到预期范围,从而解决了轴对称非球面磨削中的精度控制问题.  相似文献   
5.
针对化学气相沉积碳化硅平面反射镜的材料特性与技术要求,制定了"传统研抛 离子束抛光"的工艺方法,并在一块口径为100mm的试件上进行了验证。首先基于加工效率和亚表面损伤选择合理的工艺参数,并采用磁流变抛光斑点法测量各道工序的亚表面损伤,并以此为依据规划下一道工序的材料去除量;然后分析抛光表面粗糙度的影响因素,在此基础上对抛光工艺参数进行优化,获得表面粗糙度均方根方差值为0.584nm的超光滑表面,并控制工件的面形误差;最后采用离子束抛光进行精度提升,使工件的低频和中频误差均大幅下降,最终工件的面形精度均方根方差值达到0.007λ(λ=632.8nm),表面粗糙度均方根方差值为0.659nm。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号