首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为实现调频连续波(Frequency-modulated Continuous-wave,FMCW)激光雷达的高精度测量,针对激光雷达机械加工及装配过程中引入的几何结构误差,提出了基于激光雷达坐标测量误差的系统误差模型及误差修正方法。建立了激光雷达坐标系组,分析了空间坐标测量误差的来源。通过坐标系间的变换矩阵,实现了测量坐标的几何误差传递。然后,归并各坐标系的几何误差,建立了显式的激光雷达几何空间坐标误差表达式。并以此为基础,建立最小二乘优化目标,解算各项误差因子和修正后坐标。求得的误差因子可以用作后续坐标测量结果的修正。最后,基于该方法设计了一套以激光跟踪仪为高精度测量仪器、以靶球球心位置为标准点的标定场,使用激光跟踪仪与激光雷达测量相同位置的靶球完成系统误差修正。实验结果表明,经修正激光雷达空间距离测量的平均误差由0.044 8%下降到0.003 8%,误差极大值由4.17 mm下降到0.30 mm,验证了激光雷达几何结构误差标定和误差修正方法的有效性。  相似文献   

2.
激光跟踪测量系统跟踪转镜的误差分析   总被引:4,自引:1,他引:3  
激光跟踪测量系统是目前最新型的便携式空间大尺寸坐标测量系统,可对空间运动目标进行跟踪并实时测量其三维空间坐标,具有精度高、范围大、实时快速等特点。然而,激光跟踪测量系统中跟踪转镜的几何误差严重影响了其测量精度;所以激光跟踪测量系统在使用前必须对其进行建模和误差分析。在全面研究了激光跟踪测量系统结构和工作原理的基础上,建立了系统运动学模型和跟踪转镜中心偏移数学模型。详细分析了系统测量中基点位置变动误差、转镜跟踪目标反射器跟踪误差和转镜反射面与激光束不垂直误差等。结果表明跟踪转镜中心偏移、回转轴不对称、基点位置变动、光束反射点与基点不重合是导致测量误差的主要原因。因此,在跟踪转镜结构设计中,为保证激光束反射点与基点位置重合及转镜旋转跟踪目标反射器时基点空间位置保持不变,应尽量减少跟踪转镜旋转点与镜面之间的距离。  相似文献   

3.
考虑飞秒激光跟踪仪仪器轴系的几何误差会影响仪器的指向精度并最终影响坐标测量精度,本文研究了激光光轴与竖轴的几何误差对仪器测量精度的影响。提出了激光光轴与竖轴的同轴度标定方法,以降低其不重合带来的跟踪测量误差。首先,基于几何光学原理建立了光轴与竖轴的几何误差模型,分别分析了光轴与竖轴的倾斜与平移误差对仪器测角精度的影响。然后,针对设计的仪器提出了基于旋转成像原理的光轴与竖轴同轴度的检测方法,并设计了一套同轴度检测装置。最后,基于该检测装置,通过调节两组双光楔完成了激光光轴与竖轴的倾斜与平移误差的标定。结果显示,经标定校准后激光光轴与竖轴的角度误差为3.4″;平移误差为26.1μm,得到的结果为仪器后续建立误差补偿模型奠定了基础。  相似文献   

4.
介绍了激光跟踪测量系统的结构.分析了激光跟踪测量系统利用目标反射镜和转镜的配合实现跟踪的原理,利用球坐标系、干涉测距实现坐标的原理,并对系统测量误差的产生原理及防止误差的方法进行了讨论,最后对激光跟踪测量系统的发展趋势做了展望.  相似文献   

5.
针对激光跟踪仪和柔性关节坐标测量臂组合测量系统坐标转换过程中临时基准点引入测量误差不可控的问题,提出了利用标准杆件几何约束取代临时公用基准点的方法控制测量误差。根据经典平差最小二乘法原理和坐标系近似转换方法推导坐标转换的七参数坐标误差公式,并对该方法进行理论描述和蒙特卡洛仿真验证。通过现场测量试验,将测量结果与传统方式测量的结果相对比,证明此约束方法能够提高组合测量系统坐标转换精度,达到误差补偿的目的。  相似文献   

6.
几何误差是影响球坐标测量系统精度的重要因素,误差补偿技术是提高其测量精度的有效方法。本文针对球坐标测量系统几何误差辨识及补偿问题,提出一种基于高精度球面靶标标定的误差辨识方法。首先,基于Denavit-Hartenberg方法建立球坐标测量系统误差模型;其次,分析基于高精度球面靶标标定的误差辨识原理;最后,运用该标定方法进行几何误差辨识仿真试验,并具体分析影响误差辨识精度的因素。仿真结果表明,基于高精度球面靶标的标定方法可以辨识出7项几何误差,经过误差辨识和补偿能够提高球坐标测量系统的球面面形测量精度。  相似文献   

7.
为实现大空间域激光跟踪仪的高精度测量,本文针对由转站误差导致的激光跟踪仪分时多基站测量精度难保证的问题,提出了基于多站位下单台激光跟踪仪测量误差的转站误差模型与转站参数修正的补偿方法。首先分析了激光跟踪仪测量误差的来源以及具体形式,阐述了激光跟踪仪测量误差影响空间任意点测量精度的具体形式;其次分析了激光跟踪仪的随机测量误差和系统测量误差对多基站转站参数求解精度的影响。在此基础上,建立了考虑随机、系统测量误差的激光跟踪仪多基站转站误差模型和转站参数误差补偿模型。蒙特卡洛仿真结果表明:当激光跟踪仪的长度测量误差为0.5μm/m,角度测量误差为5μm+6μm/m时,最大转站误差为0.174 7mm,补偿后最大转站误差为0.04mm,转站精度提高了77%。分时多基站转站测量实验结果表明:直接转站测量时最大转站误差为0.054 2mm,补偿后转站误差为0.033 1mm,转站精度提升了38.9%。激光跟踪转站补偿后测量精度有明显的提高。  相似文献   

8.
基于标准器的大尺寸测量系统坐标统一化方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对大尺寸测量系统坐标统一化过程中公共点的测量误差不可控制的问题,提出了利用可现场溯源的标准器取代传统的独立公共点的方法。设计了一种标准器,并用更高精度等级的三坐标测量机对标准器上各个目标点之间的空间几何位置关系进行标定,把这些几何位置关系作为约束条件。现场应用中多站大尺寸测量仪分别测量标准器上的目标点,计算出各个几何关系与通过标定的约束关系之差,将这个差值与设定的误差限进行比较,确定公共点的测量值是否有效。对该方法进行了理论分析和仿真证明。提出了7参数坐标配准算法对大尺寸测量进行空间坐标数据配准。用激光跟踪仪和激光雷达及4个标准器进行现场实验,实验结果与传统方法相比,坐标配准误差得到降低。为了进一步验证该方法的有效性,把一根经过检定的基准尺放置于测量空间的12个不同位置,使用标准器约束前后的两组坐标配准参数分别计算基准尺长度的平均值和标准差。实验结果表明,使用标准器约束方法能够提高大尺寸测量系统坐标统一化精度。  相似文献   

9.
为了解决大尺寸空间角测量中测量基准难以建立、传递的难题,提出一种基于跟踪仪的空间角测量原理,并用自准直仪结合多面棱体对其测角误差进行标定。首先利用跟踪仪测量出基准参考轴和被测轴在惯性坐标系中的单位向量坐标,然后建立空间角测量的数学模型并实现空间角的计算,同时利用自准直仪结合多面棱体标定其测角误差。最后构建了测量系统的原理样机进行测量实验。测量结果表明样机的实际测量误差为11',满足测量精度要求。该测量原理采用跟踪仪的的惯性测量基准坐标系作为公共测量基准,有效的解决了空间角测量中测量基准难以建立、传递的难题,使得测量过程变得更加灵活。  相似文献   

10.
为了解决全局测量与局部精度控制的矛盾,为大尺寸复杂尺寸测量提供科学依据,研究了集成激光跟踪仪与光学扫描仪的组合测量及其全局标定。在扫描仪固定机构上建立了基坐标系,为激光跟踪仪提供了位姿观测基准。通过变换标定系统各组件的相对位姿以获取冗余观测数据,采用测量平差优化技术完成了扫描仪基坐标系与自身测量坐标系间的坐标转换关系的标定。此过程在测量之前完成,降低了对测量过程的干扰。利用激光跟踪仪实现了光学扫描仪的实时位姿监测,结合基坐标系标定结果实现了局部视角测量数据的统一转换。基坐标系的标定在测量之前完成,全局标定无需中介标定装置的辅助,减少了坐标转换环节并提高了测量精度与效率。对比实验表明,提出的全局标定与测量技术可有效地控制整体测量误差,能够满足飞机装配质量的在线检测需求。  相似文献   

11.
激光跟踪仪测角误差的现场评价   总被引:6,自引:0,他引:6  
激光跟踪仪是基于角度传感和测长技术相结合的球坐标测量系统,其长度测量采用激光干涉测长方法,可直接溯源至激光波长,因此,激光跟踪仪的长度测量精度远高于角度测量精度,相对而言,测角误差就成为评价跟踪仪测量精度的重要指标。为了对现场测量激光跟踪仪的测角误差进行快速有效地评价,采用跟踪仪多站位对空间中测量区域内若干个被测点进行测量,与传统基于角度交汇原理的多站位冗余测量不同,利用各站位所观测的高精度测长值建立误差方程,并通过测长方向的矢量位移对跟踪仪测长误差进行约束,获得被测点三维坐标在跟踪仪水平角和垂直角方向上的改正值,以此来评价激光跟踪仪的测角误差。通过Leica激光跟踪仪AT901-LR进行了多站位测角误差评价实验,在现场测量条件下,跟踪仪水平和垂直方向测角误差约为0.003 mm/m(1σ),符合跟踪仪的测量误差特性。  相似文献   

12.
POS系统是移动测量系统的重要组成部分,其位置姿态精度一直受到广泛关注。结合全站仪、激光跟踪仪、GNSS授时装置等传感器,设计了动态精度检测系统,开展了POS系统动态精度检测方法研究。主要采用单次测量时间统计、平滑曲线拟合等方法探测检测系统的测量误差,并在误差剔除的基础上,结合ICP算法,利用跟踪仪高精度测量数据,对全站仪数据进行修正,提高检测系统整体测量精度。最后,在某实验区,进行车载POS系统动态跟踪实验,分别采用整体轨迹对比和实时点位对比方法进行POS系统事后处理精度检测和实时导航精度检测。实验结果表明:采用该种检测方法,动态检测系统能检测出POS实时和事后处理的动态定位精度。  相似文献   

13.
针对机器人位姿标定模型中位置和姿态数据的权重不合理导致参数识别精度低甚至发散问题,给出一种直接基于末端位置坐标测量的机器人位姿标定方法,避免了位置和姿态数据量级不同对参数识别精度的影响。采用指数积方法,建立一种包含3点位置信息的机器人运动学模型。通过对运动学模型取微分,利用指数映射微分公式推导出机器人末端3点位置误差与几何参数误差之间映射关系的显示表达并给出参数误差识别方法。采用激光跟踪仪作为测量设备,以UR5机器人为标定对象进行运动学参数标定和验证试验。试验结果表明,机器人末端位置误差模和姿态误差模的平均值分别降低了90%和92%。  相似文献   

14.
层去图象法反求测量系统的标定   总被引:1,自引:1,他引:0  
在层去图象法测量系统中,物体的空间坐标与截面图象坐标之间存在着复杂的非线性映射关系。如果采用完全理想条件和线性几何失真方法来标定系统,则会影响测量精度。本文提出了一种基于神经网络的标定方法,显著地提高了测量系统的精度。  相似文献   

15.
由于机械加工精度和常平架的调平精度有限,天顶摄影仪的视轴、垂直旋转轴与铅垂线总是存在不一致,导致测量精度与理论精度存在很大的偏差.为了提高垂线偏差测量系统的精度,根据天顶摄影仪的测量原理,定性、定量地分析了各种轴系误差对垂线偏差测量精度的影响,提出了相应的修正方案,推出了修正公式和修正后的误差公式,同时还分析了由于轴系不一致引起的恒星影像偏差及其影响.最后,考虑实际的工艺水平,确定了系统的各种参数,通过仿真、模拟计算得出修正后的系统测量误差为0.4285″.  相似文献   

16.
三维激光球杆仪是一种空间坐标测量设备,由二维转台和径向伸缩机构组成。伸缩机构的末端固定有一个由测量目标磁吸并带动设备运动的标准球。伸缩机构的位移由光栅尺测量,二维转台的旋转角度由圆光栅测量,测量系统测得的坐标经坐标转换后可以得出被测目标的坐标。分析了系统的主要误差来源,采用多体系统误差建模方法建立了误差模型。最后基于几何误差模型非线性优化对设备的单项误差进行标定。经过误差补偿后,设备在测量范围内测量空间点的位置误差可以达到0.06 mm以内。  相似文献   

17.
为了提高航发叶片坐标测量系统的检测精度,采用多体系统运动学的理论分析方法,利用齐次方程转换坐标系,结合运动链之间的变换关系,建立叶片测量机构空间定位误差综合模型。用高精度激光干涉仪检测并标定测量机的几何误差,采用非实时误差补偿方法修正叶片型面的测量数据,达到抑制系统误差和提高叶片型面测量精度的目的。  相似文献   

18.
在层去图象法测量系统中,由于诸多因素的影响,物体的空间坐标与截面图象坐标之间存在着复杂的非线性映射关系。如果采用完全理想条件和线性几何失真方法来标定系统,则会影响测量精度,为此提出了一种基于神经网络的标定方法,显著地提高了测量系统的精度。  相似文献   

19.
基于激光跟踪仪的数控机床几何误差辨识方法   总被引:8,自引:0,他引:8  
激光跟踪仪作为一种三维测量仪器在工业测量中得到广泛应用,利用激光跟踪仪采用多站分时测量方法实现数控机床几何误差的快速、高精度检测.该方法通过控制机床按设定的路径在3D空间进给,一台激光跟踪仪先后在不同的基站位置对机床相同的运动轨迹进行测量,基于全球定位系统(Global positioning system,GPS)定位原理,确定基站的相对空间位置与各测量点的空间坐标,然后辨识出机床的各项几何误差.通过建立多站分时测量机床精度的数学模型,给出多站分时测量的算法原理,并推导出机床各项误差的分离算法,同时通过仿真验证该误差分离算法的可行性.试验表明,激光跟踪仪采用多路分时测量方法在4h内完成对一台数控铣床的精度检测,并分离出铣床的各项误差,该方法具有快速、精度高等优点,在中高档数控机床的精度检测中具有一定的应用前景.  相似文献   

20.
提出一种基于单拉线编码器测量系统的几何误差标定方法,通过在测量系统引入被测点位姿参数建立位姿求解模型,基于闭环矢量链建立测量系统误差辨识模型,采用最小二乘法对几何误差参数进行辨识。验证实例表明,标定后测量系统中几何参数最大绝对误差只有1×10-8 μm,从而证明标定算法的有效性与高精度。进一步分析测量系统中动滑轮圆周度和转轴角度误差,拉线弹性变形,拉线编码器误差对测量系统精度的影响。分析结果表明,当拉线编码器的测量误差为0.0046 mm,动滑轮的转轴误差为0.1°时,最优标定点数目为35个,测量系统的测量误差最大为0.037 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号